BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28271405)

  • 1. Auditory induced vestibular (otolithic) processing revealed by an independent component analysis: an fMRI parametric analysis.
    Oh SY; Boegle R; Ertl M; Eulenburg PZ; Stephan T; Dieterich M
    J Neurol; 2017 Oct; 264(Suppl 1):23-25. PubMed ID: 28271405
    [No Abstract]   [Full Text] [Related]  

  • 2. Multisensory vestibular, vestibular-auditory, and auditory network effects revealed by parametric sound pressure stimulation.
    Oh SY; Boegle R; Ertl M; Stephan T; Dieterich M
    Neuroimage; 2018 Aug; 176():354-363. PubMed ID: 29702184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenic vestibular evoked potentials.
    Papathanasiou ES
    J Am Acad Audiol; 2011; 22(7):481; author reply 482-3. PubMed ID: 21993053
    [No Abstract]   [Full Text] [Related]  

  • 4. Ageing-related changes in the cortical processing of otolith information in humans.
    Zu Eulenburg P; Ruehl RM; Runge P; Dieterich M
    Eur J Neurosci; 2017 Dec; 46(12):2817-2825. PubMed ID: 29057523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccular projections in the human cerebral cortex.
    Miyamoto T; Fukushima K; Takada T; De Waele C; Vidal PP
    Ann N Y Acad Sci; 2005 Apr; 1039():124-31. PubMed ID: 15826967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered processing of otolithic information in isolated lateral medullary infarction.
    Kim HJ; Kim S; Park JH; Kim JS
    J Neurol; 2016 Dec; 263(12):2424-2429. PubMed ID: 27624122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.
    Ertl M; Moser M; Boegle R; Conrad J; Zu Eulenburg P; Dieterich M
    Neuroimage; 2017 Jul; 155():50-59. PubMed ID: 28254458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A source analysis of short-latency vestibular evoked potentials produced by air- and bone-conducted sound.
    Todd NPM; Rosengren SM; Colebatch JG
    Clin Neurophysiol; 2008 Aug; 119(8):1881-1894. PubMed ID: 18468949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs).
    Weber KP; Rosengren SM
    Curr Neurol Neurosci Rep; 2015 May; 15(5):22. PubMed ID: 25773001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personality traits modulate subcortical and cortical vestibular and anxiety responses to sound-evoked otolithic receptor stimulation.
    Indovina I; Riccelli R; Staab JP; Lacquaniti F; Passamonti L
    J Psychosom Res; 2014 Nov; 77(5):391-400. PubMed ID: 25262497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to analyze low signal-to-noise ratio functional magnetic resonance imaging data.
    Zhu X; Kayali MA; Jansen BH
    J Integr Neurosci; 2015 Sep; 14(3):325-42. PubMed ID: 26058495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular vestibular evoked myogenic potentials to head tap and cervical vestibular evoked myogenic potentials to air-conducted sounds in isolated internuclear ophthalmoplegia.
    Kim HJ; Lee JH; Kim JS
    Clin Neurophysiol; 2014 May; 125(5):1042-7. PubMed ID: 24238926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocular vestibular evoked myogenic potentials induced by air-conducted sound in patients with acute brainstem lesions.
    Oh SY; Kim JS; Lee JM; Shin BS; Hwang SB; Kwak KC; Kim C; Jeong SK; Kim TW
    Clin Neurophysiol; 2013 Apr; 124(4):770-8. PubMed ID: 23121898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H2[15 O] PET-BOLD MRI activation study.
    Becker-Bense S; Willoch F; Stephan T; Brendel M; Yakushev I; Habs M; Ziegler S; Herz M; Schwaiger M; Dieterich M; Bartenstein P
    PLoS One; 2020; 15(5):e0233262. PubMed ID: 32413079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-trial EEG-fMRI coupling of the emotional auditory early posterior negativity.
    Jaspers-Fayer F; Ertl M; Leicht G; Leupelt A; Mulert C
    Neuroimage; 2012 Sep; 62(3):1807-14. PubMed ID: 22584235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localisation and characterisation of auditory perception through Functional Magnetic Resonance Imaging.
    Formisano E; Pepino A; Bracale M; Di Salle F; Saulino C; Marciano E
    Technol Health Care; 1998 Sep; 6(2-3):111-23. PubMed ID: 9839857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI.
    Da Costa S; Saenz M; Clarke S; van der Zwaag W
    Brain Topogr; 2015 Jan; 28(1):66-9. PubMed ID: 25098273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of auditory motion in inferior parietal lobule: evidence from transcranial magnetic stimulation.
    Lewald J; Staedtgen M; Sparing R; Meister IG
    Neuropsychologia; 2011 Jan; 49(2):209-15. PubMed ID: 21130790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI.
    Lee YS; Janata P; Frost C; Hanke M; Granger R
    Neuroimage; 2011 Jul; 57(1):293-300. PubMed ID: 21315158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.