BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 28271881)

  • 1. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications.
    Li JF; Anema JR; Wandlowski T; Tian ZQ
    Chem Soc Rev; 2015 Dec; 44(23):8399-409. PubMed ID: 26426491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy.
    Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF
    ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies.
    Zhang YJ; Radjenovic PM; Zhou XS; Zhang H; Yao JL; Li JF
    Adv Mater; 2021 Dec; 33(50):e2005900. PubMed ID: 33811422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications.
    Wang K; Sun DW; Pu H; Wei Q
    Talanta; 2019 Apr; 195():506-515. PubMed ID: 30625576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes.
    Boccorh DK; Macdonald PA; Boyle CW; Wain AJ; Berlouis LEA; Wark AW
    Nanoscale Adv; 2021 Nov; 3(22):6415-6426. PubMed ID: 36133494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.
    Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of gold nanoparticles coated with ultrathin and chemically inert dielectric shells for SHINERS applications.
    Li JF; Li SB; Anema JR; Yang ZL; Huang YF; Ding Y; Wu YF; Zhou XS; Wu DY; Ren B; Wang ZL; Tian ZQ
    Appl Spectrosc; 2011 Jun; 65(6):620-6. PubMed ID: 21639983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Near-Field Localization of Silver Core-Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering.
    Asapu R; Ciocarlan RG; Claes N; Blommaerts N; Minjauw M; Ahmad T; Dendooven J; Cool P; Bals S; Denys S; Detavernier C; Lenaerts S; Verbruggen SW
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41577-41585. PubMed ID: 29119785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle.
    Ding SY; You EM; Yi J; Li JF; Tian ZQ
    Faraday Discuss; 2017 Dec; 205():457-468. PubMed ID: 28885636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Krajczewski J; Kudelski A
    Front Chem; 2019; 7():410. PubMed ID: 31214580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic Core-Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform.
    Yilmaz A; Yilmaz M
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic-plasmonic Ni@Au core-shell nanoparticle arrays and their SERS properties.
    Wang L; Wang Z; Li L; Zhang J; Liu J; Hu J; Wu X; Weng Z; Chu X; Li J; Qiao Z
    RSC Adv; 2020 Jan; 10(5):2661-2669. PubMed ID: 35496119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.