BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28272051)

  • 1. Chemical adsorption of oxytetracycline from aqueous solution by modified molecular sieves.
    Lv J; Ma Y; Chang X; Fang J; Cai L; Ma Y; Fan S
    Water Sci Technol; 2017 Mar; 75(5-6):1221-1232. PubMed ID: 28272051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Oxytetracycline removal in aqueous by two kinds of zeolites with different bore diameter].
    Li Y; Zhao C; Deng HP
    Huan Jing Ke Xue; 2010 Apr; 31(4):990-5. PubMed ID: 20527181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of tetracycline and oxytetracycline from water by magnetic Fe
    Zhang Y; Jiao Z; Hu Y; Lv S; Fan H; Zeng Y; Hu J; Wang M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2987-2995. PubMed ID: 27848131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules.
    Yu LL; Luo ZF; Zhang YY; Wu SC; Yang C; Cheng JH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3685-3696. PubMed ID: 30535742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.
    Nezamzadeh-Ejhieh A; Kabiri-Samani M
    J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media.
    Ramanayaka S; Sarkar B; Cooray AT; Ok YS; Vithanage M
    J Hazard Mater; 2020 Feb; 384():121301. PubMed ID: 31600698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.
    Dawood S; Sen TK
    Water Res; 2012 Apr; 46(6):1933-46. PubMed ID: 22289676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cu(II) from aqueous solution by adsorption on Chinese Quaternary loess: kinetics and equilibrium studies.
    Tang XW; Li ZZ; Chen YM; Wang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):779-91. PubMed ID: 18444081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles.
    Liu Q; Liu Q; Ruan Z; Chang X; Yao J
    Ecotoxicol Environ Saf; 2016 Jul; 129():273-81. PubMed ID: 27057995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar.
    Gao M; Zhang Y; Gong X; Song Z; Guo Z
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7796-7807. PubMed ID: 29290063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu(II) ion removal from aqueous solutions.
    Saber M; Takahashi F; Yoshikawa K
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32721-32734. PubMed ID: 30244443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Cu²⁺ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism.
    Zhu HX; Cao XJ; He YC; Kong QP; He H; Wang J
    Carbohydr Polym; 2015 Sep; 129():115-26. PubMed ID: 26050896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of oxytetracycline using MnO
    Bobde P; Sharma AK; Kumar R; Pal S; Pandey JK; Wadhwa S
    Environ Monit Assess; 2023 Oct; 195(11):1291. PubMed ID: 37821660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.
    Monier M; Abdel-Latif DA
    J Hazard Mater; 2013 Apr; 250-251():122-30. PubMed ID: 23435202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.
    Senturk HB; Ozdes D; Gundogdu A; Duran C; Soylak M
    J Hazard Mater; 2009 Dec; 172(1):353-62. PubMed ID: 19656623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media.
    Ashiq A; Walpita J; Vithanage M
    Chemosphere; 2021 Aug; 276():130079. PubMed ID: 33721631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis.
    Celekli A; Yavuzatmaca M; Bozkurt H
    J Hazard Mater; 2010 Jan; 173(1-3):123-9. PubMed ID: 19748176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of trace oxytetracycline from water by acid-modified zeolite: influencing factors.
    An W; Xiao H; Yu M; Chen X; Xu Y; Zhou W
    Water Sci Technol; 2013; 68(11):2473-8. PubMed ID: 24334898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.