BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 28272362)

  • 1. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Sensor Data Classification for Human Activity Recognition Based on an Iterative Learning Framework.
    Davila JC; Cretu AM; Zaremba M
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0.
    Zheng X; Wang M; Ordieres-Meré J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors.
    Rosati S; Balestra G; Knaflitz M
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
    Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People.
    Meng L; Zhang A; Chen C; Wang X; Jiang X; Tao L; Fan J; Wu X; Dai C; Zhang Y; Vanrumste B; Tamura T; Chen W
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition.
    Haresamudram H; Essa I; Plötz T
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms.
    Vu CC; Kim J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.