These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28272442)

  • 1. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.
    Chen K; Duy Dao T; Nagao T
    Sci Rep; 2017 Mar; 7():44069. PubMed ID: 28272442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study.
    Li Z; Zhang Z; Chen K
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas.
    Duan J; Alfaro-Mozaz FJ; Taboada-Gutiérrez J; Dolado I; Álvarez-Pérez G; Titova E; Bylinkin A; Tresguerres-Mata AIF; Martín-Sánchez J; Liu S; Edgar JH; Bandurin DA; Jarillo-Herrero P; Hillenbrand R; Nikitin AY; Alonso-González P
    Adv Mater; 2022 Mar; 34(10):e2104954. PubMed ID: 34964174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-semiconductor plasmonic nanoantennas for infrared sensing.
    Law S; Yu L; Rosenberg A; Wasserman D
    Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption.
    Giordano MC; Tzschoppe M; Barelli M; Vogt J; Huck C; Canepa F; Pucci A; Buatier de Mongeot F
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11155-11162. PubMed ID: 32049480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized surface plasmons in structures with linear Au nanoantennas on a SiO
    Milekhin IA; Kuznetsov SA; Rodyakina EE; Milekhin AG; Latyshev AV; Zahn DR
    Beilstein J Nanotechnol; 2016; 7():1519-1526. PubMed ID: 28144502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy.
    Jung Y; Hwang I; Yu J; Lee J; Choi JH; Jeong JH; Jung JY; Lee J
    Sci Rep; 2019 May; 9(1):7834. PubMed ID: 31127173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.
    Bukasov R; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4531-5. PubMed ID: 19408957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cup-Shaped Nanoantenna Arrays for Zeptoliter Volume Biochemistry and Plasmonic Sensing in the Visible Wavelength Range.
    Drevinskas R; Rakickas T; Selskis A; Rosa L; Valiokas RN
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19082-19091. PubMed ID: 28523911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoantenna structures for the detection of phonons in nanocrystals.
    Milekhin AG; Kuznetsov SA; Milekhin IA; Sveshnikova LL; Duda TA; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Beilstein J Nanotechnol; 2018; 9():2646-2656. PubMed ID: 30416915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imprint and transfer fabrication of freestanding plasmonic membranes.
    Liu L; Monshat H; Wu HY; Lu M
    Nanotechnology; 2020 Sep; 31(37):375302. PubMed ID: 32485684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules.
    Milekhin AG; Cherkasova O; Kuznetsov SA; Milekhin IA; Rodyakina EE; Latyshev AV; Banerjee S; Salvan G; Zahn DRT
    Beilstein J Nanotechnol; 2017; 8():975-981. PubMed ID: 28546892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Readily tunable surface plasmon resonances in gold nanoring arrays fabricated using lateral electrodeposition.
    Mehla S; Selvakannan PR; Bhargava SK
    Nanoscale; 2022 Jul; 14(28):9989-9996. PubMed ID: 35793170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Etching-free high-throughput intersectional nanofabrication of diverse optical nanoantennas for nanoscale light manipulation.
    Ma C; Zhao F; Zhou F; Li M; Zheng Z; Yan J; Li J; Li X; Guan BO; Chen K
    J Colloid Interface Sci; 2022 Sep; 622():950-959. PubMed ID: 35561613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable polymer brush/Au NPs hybrid plasmonic arrays based on host-guest interaction.
    Fang L; Li Y; Chen Z; Liu W; Zhang J; Xiang S; Shen H; Li Z; Yang B
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19951-7. PubMed ID: 25347749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA).
    Brown LV; Yang X; Zhao K; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1272-80. PubMed ID: 25565006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Characterization of a Metallic-Dielectric Nanorod Array by Nanosphere Lithography for Plasmonic Sensing Application.
    Chou Chau YF; Chen KH; Chiang HP; Lim CM; Huang HJ; Lai CH; Kumara NTRN
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31779222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.