BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28272505)

  • 1. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles.
    Kusi-Appiah AE; Mastronardi ML; Qian C; Chen KK; Ghazanfari L; Prommapan P; Kübel C; Ozin GA; Lenhert S
    Sci Rep; 2017 Mar; 7():43731. PubMed ID: 28272505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes.
    Preiss MR; Hart A; Kitchens C; Bothun GD
    J Phys Chem B; 2017 May; 121(19):5040-5047. PubMed ID: 28441023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy.
    Tahir N; Madni A; Correia A; Rehman M; Balasubramanian V; Khan MM; Santos HA
    Int J Nanomedicine; 2019; 14():4961-4974. PubMed ID: 31308666
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure-Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes.
    Atukorale PU; Guven ZP; Bekdemir A; Carney RP; Van Lehn RC; Yun DS; Jacob Silva PH; Demurtas D; Yang YS; Alexander-Katz A; Stellacci F; Irvine DJ
    Bioconjug Chem; 2018 Apr; 29(4):1131-1140. PubMed ID: 29465986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-enabled liposomes elucidate size-dependent transdermal transport.
    Hood RR; Kendall EL; Junqueira M; Vreeland WN; Quezado Z; Finkel JC; DeVoe DL
    PLoS One; 2014; 9(3):e92978. PubMed ID: 24658111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of nanostructure lipid carrier (NLC) by oleoyl-quaternized-chitosan as a mucoadhesive nanocarrier.
    Yostawonkul J; Surassmo S; Iempridee T; Pimtong W; Suktham K; Sajomsang W; Gonil P; Ruktanonchai UR
    Colloids Surf B Biointerfaces; 2017 Jan; 149():301-311. PubMed ID: 27780087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane.
    Das P; Saha A; Maity AR; Ray SC; Jana NR
    Nanoscale; 2013 Jul; 5(13):5732-7. PubMed ID: 23715596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics.
    Bhattacharjee S; Ershov D; Fytianos K; van der Gucht J; Alink GM; Rietjens IM; Marcelis AT; Zuilhof H
    Part Fibre Toxicol; 2012 Apr; 9():11. PubMed ID: 22546147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel.
    Lundberg BB
    Int J Pharm; 2011 Apr; 408(1-2):208-12. PubMed ID: 21296135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation.
    Hervella P; Parra E; Needham D
    Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.
    Tam YT; To KK; Chow AH
    Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles.
    Glangchai LC; Caldorera-Moore M; Shi L; Roy K
    J Control Release; 2008 Feb; 125(3):263-72. PubMed ID: 18053607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries.
    Bai X; Wang S; Yan X; Zhou H; Zhan J; Liu S; Sharma VK; Jiang G; Zhu H; Yan B
    ACS Nano; 2020 Jan; 14(1):289-302. PubMed ID: 31869202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions.
    Musyanovych A; Schmitz-Wienke J; Mailänder V; Walther P; Landfester K
    Macromol Biosci; 2008 Feb; 8(2):127-39. PubMed ID: 18213594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to caco-2 monolayers mimics particle uptake.
    Pietzonka P; Rothen-Rutishauser B; Langguth P; Wunderli-Allenspach H; Walter E; Merkle HP
    Pharm Res; 2002 May; 19(5):595-601. PubMed ID: 12069160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition.
    Strachan JB; Dyett BP; Nasa Z; Valery C; Conn CE
    J Colloid Interface Sci; 2020 Sep; 576():241-251. PubMed ID: 32428785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells.
    Zhu J; Liao L; Zhu L; Zhang P; Guo K; Kong J; Ji C; Liu B
    Talanta; 2013 Mar; 107():408-15. PubMed ID: 23598242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.