BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28272513)

  • 1. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing.
    Wang JC; Zheng H; Chang MW; Ahmad Z; Li JS
    Sci Rep; 2017 Mar; 7():43924. PubMed ID: 28272513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches.
    Yao ZC; Wang JC; Ahmad Z; Li JS; Chang MW
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():776-783. PubMed ID: 30678967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printed Design of Antibiotic-Releasing Esophageal Patches for Antimicrobial Activity Prevention.
    Kim SD; Kim IG; Tran HN; Cho H; Janarthanan G; Noh I; Chung EJ
    Tissue Eng Part A; 2021 Dec; 27(23-24):1490-1502. PubMed ID: 33847168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms.
    Wu S; Li JS; Mai J; Chang MW
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24876-24885. PubMed ID: 29953813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery.
    Altun E; Yuca E; Ekren N; Kalaskar DM; Ficai D; Dolete G; Ficai A; Gunduz O
    Pharmaceutics; 2021 Apr; 13(5):. PubMed ID: 33922739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.
    Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.
    He J; Xu F; Dong R; Guo B; Li D
    Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-micro-patterned fibrous dosage forms for immediate drug release.
    Blaesi AH; Saka N
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():218-229. PubMed ID: 29519432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets.
    Okwuosa TC; Stefaniak D; Arafat B; Isreb A; Wan KW; Alhnan MA
    Pharm Res; 2016 Nov; 33(11):2704-12. PubMed ID: 27506424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrohydrodynamic Printing of Microfibrous Architectures with Cell-Scale Spacing for Improved Cellular Migration and Neurite Outgrowth.
    Yao C; Qiu Z; Li X; Zhu H; Li D; He J
    Small; 2023 May; 19(19):e2207331. PubMed ID: 36775926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.
    Verstraete G; Samaro A; Grymonpré W; Vanhoorne V; Van Snick B; Boone MN; Hellemans T; Van Hoorebeke L; Remon JP; Vervaet C
    Int J Pharm; 2018 Jan; 536(1):318-325. PubMed ID: 29217471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment of One-Dimensional SnO2 Lines by Electrohydrodynamic Jet Printing.
    Choi H; Jung H; Choi DK; Kim CY
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1818-21. PubMed ID: 27433678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.
    Alhijjaj M; Belton P; Qi S
    Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Situ Assembly of MoS
    Zhang B; Li S; Qureshi MSH; Mia U; Ge Z; Song A
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.
    Lee H; Seong B; Kim J; Jang Y; Byun D
    Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.
    Mehta P; Justo L; Walsh S; Arshad MS; Wilson CG; O'Sullivan CK; Moghimi SM; Vizirianakis IS; Avgoustakis K; Fatouros DG; Ahmad Z
    J Drug Target; 2015 May; 23(4):305-10. PubMed ID: 25582133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.