These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28272519)

  • 1. Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures.
    Lee KL; Hsu HY; You ML; Chang CC; Pan MY; Shi X; Ueno K; Misawa H; Wei PK
    Sci Rep; 2017 Mar; 7():44104. PubMed ID: 28272519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Surface Sensitivity of Nanostructure-Based Aluminum Sensors Using Capped Dielectric Layers.
    Lee KL; Tsai PC; You ML; Pan MY; Shi X; Ueno K; Misawa H; Wei PK
    ACS Omega; 2017 Oct; 2(10):7461-7470. PubMed ID: 30023553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays.
    Lee KL; Huang JB; Chang JW; Wu SH; Wei PK
    Sci Rep; 2015 Feb; 5():8547. PubMed ID: 25708955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods.
    Lee KL; Wu TY; Hsu HY; Yang SY; Wei PK
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-referencing biosensors using Fano resonance in periodic aluminium nanostructures.
    Lo SC; Yeh CW; Wang SH; Kuo CW; Lee KL; Chern RL; Wei PK
    Nanoscale; 2021 Nov; 13(42):17775-17783. PubMed ID: 34523639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Surface Sensitivity of Metallic Nanostructures Using Oblique-Angle-Induced Fano Resonances.
    Lee KL; Chang CC; You ML; Pan MY; Wei PK
    Sci Rep; 2016 Sep; 6():33126. PubMed ID: 27609431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films.
    Lee KL; Chen PW; Wu SH; Huang JB; Yang SY; Wei PK
    ACS Nano; 2012 Apr; 6(4):2931-9. PubMed ID: 22452266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive Oligonucleotide Detection Using Resonant Coupling between Fano Resonance and Image Dipoles of Gold Nanoparticles.
    Kuo CW; Wang SH; Lo SC; Yong WH; Ho YL; Delaunay JJ; Tsai WS; Wei PK
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14012-14024. PubMed ID: 35297595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeing protein monolayers with naked eye through plasmonic Fano resonances.
    Yanik AA; Cetin AE; Huang M; Artar A; Mousavi SH; Khanikaev A; Connor JH; Shvets G; Altug H
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11784-9. PubMed ID: 21715661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection.
    Pan MY; Lee KL; Wang L; Wei PK
    Biosens Bioelectron; 2017 May; 91():580-587. PubMed ID: 28088751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.
    Lin L; Roberts A
    Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.
    Lee KL; Chang CC; You ML; Pan MY; Wei PK
    Sci Rep; 2018 Jun; 8(1):9762. PubMed ID: 29950690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method.
    Lee KL; Wei PK
    Small; 2010 Sep; 6(17):1900-7. PubMed ID: 20669239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layered metal grating for high-performance refractive index sensing.
    Li G; Shen Y; Xiao G; Jin C
    Opt Express; 2015 Apr; 23(7):8995-9003. PubMed ID: 25968735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.