These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 28272863)
1. Serotonin Transporter-Independent Actions of the Antidepressant Vortioxetine As Revealed Using the SERT Met172 Mouse. Nackenoff AG; Simmler LD; Baganz NL; Pehrson AL; Sánchez C; Blakely RD ACS Chem Neurosci; 2017 May; 8(5):1092-1100. PubMed ID: 28272863 [TBL] [Abstract][Full Text] [Related]
2. Essential Contributions of Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram in the SERT Met172 Mouse. Nackenoff AG; Moussa-Tooks AB; McMeekin AM; Veenstra-VanderWeele J; Blakely RD Neuropsychopharmacology; 2016 Jun; 41(7):1733-41. PubMed ID: 26514584 [TBL] [Abstract][Full Text] [Related]
3. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism. Bétry C; Pehrson AL; Etiévant A; Ebert B; Sánchez C; Haddjeri N Int J Neuropsychopharmacol; 2013 Jun; 16(5):1115-27. PubMed ID: 23089374 [TBL] [Abstract][Full Text] [Related]
4. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism. Leiser SC; Iglesias-Bregna D; Westrich L; Pehrson AL; Sanchez C J Psychopharmacol; 2015 Oct; 29(10):1092-105. PubMed ID: 26174134 [TBL] [Abstract][Full Text] [Related]
5. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Sanchez C; Asin KE; Artigas F Pharmacol Ther; 2015 Jan; 145():43-57. PubMed ID: 25016186 [TBL] [Abstract][Full Text] [Related]
6. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission. Riga MS; Sánchez C; Celada P; Artigas F Neuropharmacology; 2016 Sep; 108():73-81. PubMed ID: 27106166 [TBL] [Abstract][Full Text] [Related]
7. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Guilloux JP; Mendez-David I; Pehrson A; Guiard BP; Repérant C; Orvoën S; Gardier AM; Hen R; Ebert B; Miller S; Sanchez C; David DJ Neuropharmacology; 2013 Oct; 73():147-59. PubMed ID: 23721744 [TBL] [Abstract][Full Text] [Related]
8. Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters--a rat microdialysis and electrophysiology study. Pehrson AL; Cremers T; Bétry C; van der Hart MG; Jørgensen L; Madsen M; Haddjeri N; Ebert B; Sanchez C Eur Neuropsychopharmacol; 2013 Feb; 23(2):133-45. PubMed ID: 22612991 [TBL] [Abstract][Full Text] [Related]
9. Vortioxetine: A review of the pharmacology and clinical profile of the novel antidepressant. Sowa-Kućma M; Pańczyszyn-Trzewik P; Misztak P; Jaeschke RR; Sendek K; Styczeń K; Datka W; Koperny M Pharmacol Rep; 2017 Aug; 69(4):595-601. PubMed ID: 28499187 [TBL] [Abstract][Full Text] [Related]
10. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. du Jardin KG; Liebenberg N; Müller HK; Elfving B; Sanchez C; Wegener G Psychopharmacology (Berl); 2016 Jul; 233(14):2813-25. PubMed ID: 27236785 [TBL] [Abstract][Full Text] [Related]
11. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice. Bowman MA; Vitela M; Clarke KM; Koek W; Daws LC Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066466 [TBL] [Abstract][Full Text] [Related]
12. Binding of the multimodal antidepressant drug vortioxetine to the human serotonin transporter. Andersen J; Ladefoged LK; Wang D; Kristensen TN; Bang-Andersen B; Kristensen AS; Schiøtt B; Strømgaard K ACS Chem Neurosci; 2015 Nov; 6(11):1892-900. PubMed ID: 26389667 [TBL] [Abstract][Full Text] [Related]
13. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. Bang-Andersen B; Ruhland T; Jørgensen M; Smith G; Frederiksen K; Jensen KG; Zhong H; Nielsen SM; Hogg S; Mørk A; Stensbøl TB J Med Chem; 2011 May; 54(9):3206-21. PubMed ID: 21486038 [TBL] [Abstract][Full Text] [Related]
14. Ontogeny of Norepinephrine Transporter Expression and Antidepressant-Like Response to Desipramine in Wild-Type and Serotonin Transporter Mutant Mice. Mitchell NC; Bowman MA; Gould GG; Koek W; Daws LC J Pharmacol Exp Ther; 2017 Jan; 360(1):84-94. PubMed ID: 27831486 [TBL] [Abstract][Full Text] [Related]
15. Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Thompson BJ; Jessen T; Henry LK; Field JR; Gamble KL; Gresch PJ; Carneiro AM; Horton RE; Chisnell PJ; Belova Y; McMahon DG; Daws LC; Blakely RD Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3785-90. PubMed ID: 21282638 [TBL] [Abstract][Full Text] [Related]
16. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice. Mitchell NC; Gould GG; Koek W; Daws LC J Pharmacol Exp Ther; 2016 Aug; 358(2):271-81. PubMed ID: 27288483 [TBL] [Abstract][Full Text] [Related]
17. Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Bétry C; Etiévant A; Pehrson A; Sánchez C; Haddjeri N Prog Neuropsychopharmacol Biol Psychiatry; 2015 Apr; 58():38-46. PubMed ID: 25524057 [TBL] [Abstract][Full Text] [Related]
18. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. David DJ; Tritschler L; Guilloux JP; Gardier AM; Sanchez C; Gaillard R Encephale; 2016 Feb; 42(1 Suppl 1):1S12-23. PubMed ID: 26879252 [TBL] [Abstract][Full Text] [Related]
19. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures. Waller JA; Chen F; Sánchez C Neuropharmacology; 2016 Apr; 103():143-54. PubMed ID: 26702943 [TBL] [Abstract][Full Text] [Related]
20. Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Deltheil T; Guiard BP; Cerdan J; David DJ; Tanaka KF; Repérant C; Guilloux JP; Coudoré F; Hen R; Gardier AM Neuropharmacology; 2008 Nov; 55(6):1006-14. PubMed ID: 18761360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]