These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28272879)

  • 41. Synergistic Modulation of Multiple Sites Boosts Anti-Poisoning Hydrogen Electrooxidation Reaction with Ultrasmall (Pt
    Hou YC; Shen T; Hu K; Wang X; Zheng QN; Le JB; Dong JC; Li JF
    Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202402496. PubMed ID: 38863241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toward new fuel cell support materials: a theoretical and experimental study of nitrogen-doped graphene.
    Seo MH; Choi SM; Lim EJ; Kwon IH; Seo JK; Noh SH; Kim WB; Han B
    ChemSusChem; 2014 Sep; 7(9):2609-20. PubMed ID: 25044873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.
    Sun Z; Wang X; Liu Z; Zhang H; Yu P; Mao L
    Langmuir; 2010 Jul; 26(14):12383-9. PubMed ID: 20486650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural transformation of carbon-supported Pt₃Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst.
    Zou L; Li J; Yuan T; Zhou Y; Li X; Yang H
    Nanoscale; 2014 Sep; 6(18):10686-92. PubMed ID: 25092107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.
    Yang WH; Wang HH; Chen DH; Zhou ZY; Sun SG
    Phys Chem Chem Phys; 2012 Dec; 14(47):16424-32. PubMed ID: 23133838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction.
    Chung DY; Jun SW; Yoon G; Kwon SG; Shin DY; Seo P; Yoo JM; Shin H; Chung YH; Kim H; Mun BS; Lee KS; Lee NS; Yoo SJ; Lim DH; Kang K; Sung YE; Hyeon T
    J Am Chem Soc; 2015 Dec; 137(49):15478-85. PubMed ID: 26670103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches.
    Alden LR; Roychowdhury C; Matsumoto F; Han DK; Zeldovich VB; Abruña HD; Disalvo FJ
    Langmuir; 2006 Dec; 22(25):10465-71. PubMed ID: 17129017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoporous Mo-doped PtBi intermetallic metallene superstructures to enable the complete electrooxidation of ethylene glycol.
    Yang X; Yuan Q; Sheng T; Wang X
    Chem Sci; 2024 Mar; 15(12):4349-4357. PubMed ID: 38516075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trimetallic PtSnRh Wavy Nanowires as Efficient Nanoelectrocatalysts for Alcohol Electrooxidation.
    Jiang K; Bu L; Wang P; Guo S; Huang X
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15061-7. PubMed ID: 26098177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures.
    Pei Y; Maligal-Ganesh RV; Xiao C; Goh TW; Brashler K; Gustafson JA; Huang W
    Nanoscale; 2015 Oct; 7(40):16721-8. PubMed ID: 26399612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clarifying the role of Ru in methanol oxidation at Ru(core)@Pt(shell) nanoparticles.
    El Sawy EN; El-Sayed HA; Birss VI
    Phys Chem Chem Phys; 2015 Nov; 17(41):27509-19. PubMed ID: 26426281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of the Stable Pt Single Sites in the Environment of Ions: From Mechanism to Design Principle.
    Chen F; Sun W; Zhang D; Guo F; Zhan S; Shen Z
    Adv Mater; 2022 Jul; 34(26):e2108504. PubMed ID: 35436010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation.
    Yang M; Cui Z; DiSalvo FJ
    Phys Chem Chem Phys; 2013 Jan; 15(4):1088-92. PubMed ID: 23223367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile Fabrication of Well-Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications.
    Liu X; Chen D; Chen L; Jin R; Xing S; Xing H; Xing Y; Su Z
    Chemistry; 2016 Jun; 22(27):9293-8. PubMed ID: 27245766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles.
    Abe H; Matsumoto F; Alden LR; Warren SC; Abruña HD; DiSalvo FJ
    J Am Chem Soc; 2008 Apr; 130(16):5452-8. PubMed ID: 18370390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Ni
    Xu Y; Jin H; Hirano T; Matsushita Y; Zhang J
    Sci Technol Adv Mater; 2019; 20(1):622-631. PubMed ID: 31258825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gold atomic clusters extracting the valence electrons to shield the carbon monoxide passivation on near-monolayer core-shell nanocatalysts in methanol oxidation reactions.
    Chen TY; Li HD; Lee GW; Huang PC; Yang PW; Liu YT; Liao YF; Jeng HT; Lin DS; Lin TL
    Phys Chem Chem Phys; 2015 Jun; 17(23):15131-9. PubMed ID: 25991582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles.
    Chen M; Han Y; Goh TW; Sun R; Maligal-Ganesh RV; Pei Y; Tsung CK; Evans JW; Huang W
    Nanoscale; 2019 Mar; 11(12):5336-5345. PubMed ID: 30843547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.