These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28272891)
21. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
22. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies. Cukrowski I; de Lange JH; Mitoraj M J Phys Chem A; 2014 Jan; 118(3):623-37. PubMed ID: 24377828 [TBL] [Abstract][Full Text] [Related]
23. A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field. Xiang JY; Ponder JW J Comput Chem; 2013 Apr; 34(9):739-49. PubMed ID: 23212979 [TBL] [Abstract][Full Text] [Related]
24. Coordination properties of a metal chelator clioquinol to Zn(2+) studied by static DFT and ab initio molecular dynamics. Rodríguez-Santiago L; Alí-Torres J; Vidossich P; Sodupe M Phys Chem Chem Phys; 2015 May; 17(20):13582-9. PubMed ID: 25939963 [TBL] [Abstract][Full Text] [Related]
25. Many-body exchange-repulsion in polarizable molecular mechanics. I. Orbital-based approximations and applications to hydrated metal cation complexes. Chaudret R; Gresh N; Parisel O; Piquemal JP J Comput Chem; 2011 Nov; 32(14):2949-57. PubMed ID: 21793002 [TBL] [Abstract][Full Text] [Related]
26. Ab Initio and DFT Studies on CO2 Interacting with Zn(q+)-Imidazole (q=0, 1, 2) Complexes: Prediction of Charge Transfer through σ- or π-Type Models. Boulmene R; Boussouf K; Prakash M; Komiha N; Al-Mogren MM; Hochlaf M Chemphyschem; 2016 Apr; 17(7):994-1005. PubMed ID: 26790137 [TBL] [Abstract][Full Text] [Related]
27. Representative Amino Acid Side-Chain Interactions in Protein-DNA Complexes: A Comparison of Highly Accurate Correlated Ab Initio Quantum Mechanical Calculations and Efficient Approaches for Applications to Large Systems. Hostaš J; Jakubec D; Laskowski RA; Gnanasekaran R; Řezáč J; Vondrášek J; Hobza P J Chem Theory Comput; 2015 Sep; 11(9):4086-92. PubMed ID: 26575904 [TBL] [Abstract][Full Text] [Related]
28. Effect of the carboxylate shift on the reactivity of zinc complexes in the gas phase. Duchácková L; Schröder D; Roithová J Inorg Chem; 2011 Apr; 50(7):3153-8. PubMed ID: 21381680 [TBL] [Abstract][Full Text] [Related]
29. Amino acid and peptide bioconjugates of copper(II) and zinc(II) complexes with a modified N,N-bis(2-picolyl)amine ligand. Kirin SI; Dübon P; Weyhermüller T; Bill E; Metzler-Nolte N Inorg Chem; 2005 Jul; 44(15):5405-15. PubMed ID: 16022539 [TBL] [Abstract][Full Text] [Related]
30. Modeling Zn²⁺ release from metallothionein. Babu CS; Lee YM; Dudev T; Lim C J Phys Chem A; 2014 Oct; 118(39):9244-52. PubMed ID: 25116831 [TBL] [Abstract][Full Text] [Related]
31. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties. Riahi S; Rowley CN J Comput Chem; 2014 Oct; 35(28):2076-86. PubMed ID: 25178266 [TBL] [Abstract][Full Text] [Related]
32. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation? Gutten O; Beššeová I; Rulíšek L J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367 [TBL] [Abstract][Full Text] [Related]
33. A QM/MM study of the binding of RAPTA ligands to cathepsin B. Ciancetta A; Genheden S; Ryde U J Comput Aided Mol Des; 2011 Aug; 25(8):729-42. PubMed ID: 21701919 [TBL] [Abstract][Full Text] [Related]
34. Interaction of rac-[Cu(diimine)3]2+ and rac-[Zn(diimine)3]2+ complexes with CT DNA: effect of fluxional Cu(II) geometry on DNA binding, ligand-promoted exciton coupling and prominent DNA cleavage. Ramakrishnan S; Palaniandavar M Dalton Trans; 2008 Aug; (29):3866-78. PubMed ID: 18629409 [TBL] [Abstract][Full Text] [Related]
35. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation. Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454 [TBL] [Abstract][Full Text] [Related]
36. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. Kamerlin SC; Haranczyk M; Warshel A J Phys Chem B; 2009 Feb; 113(5):1253-72. PubMed ID: 19055405 [TBL] [Abstract][Full Text] [Related]
37. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field. Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY J Phys Chem B; 2015 Jul; 119(29):9401-16. PubMed ID: 25578354 [TBL] [Abstract][Full Text] [Related]
38. Alkali and Alkaline-Earth Cations in Complexes with Small Bioorganic Ligands: Ab Initio Benchmark Calculations and Bond Energy Decomposition. López R; Díaz N; Suárez D Chemphyschem; 2020 Jan; 21(1):99-112. PubMed ID: 31674092 [TBL] [Abstract][Full Text] [Related]
39. High-field solid-state (67)Zn NMR spectroscopy of several zinc-amino acid complexes. Mroué KH; Power WP J Phys Chem A; 2010 Jan; 114(1):324-35. PubMed ID: 19919076 [TBL] [Abstract][Full Text] [Related]
40. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Fox SJ; Dziedzic J; Fox T; Tautermann CS; Skylaris CK Proteins; 2014 Dec; 82(12):3335-46. PubMed ID: 25212393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]