BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28273418)

  • 1. Networking Nanoswitches for ON/OFF Control of Catalysis.
    Mittal N; Pramanik S; Paul I; De S; Schmittel M
    J Am Chem Soc; 2017 Mar; 139(12):4270-4273. PubMed ID: 28273418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-speed network of nanoswitches for on/off control of catalysis.
    Gaikwad S; Pramanik S; De S; Schmittel M
    Dalton Trans; 2018 Feb; 47(6):1786-1790. PubMed ID: 29354824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A toggle nanoswitch alternately controlling two catalytic reactions.
    De S; Pramanik S; Schmittel M
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14255-9. PubMed ID: 25349146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network.
    Goswami A; Pramanik S; Schmittel M
    Chem Commun (Camb); 2018 Apr; 54(32):3955-3958. PubMed ID: 29557468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From self-sorted coordination libraries to networking nanoswitches for catalysis.
    Schmittel M
    Chem Commun (Camb); 2015 Oct; 51(81):14956-68. PubMed ID: 26390984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A monomer-dimer nanoswitch that mimics the working principle of the SARS-CoV 3CLpro enzyme controls copper-catalysed cyclopropanation.
    De S; Pramanik S; Schmittel M
    Dalton Trans; 2014 Jul; 43(28):10977-82. PubMed ID: 24905480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery.
    Goswami A; Paululat T; Schmittel M
    J Am Chem Soc; 2019 Oct; 141(39):15656-15663. PubMed ID: 31536350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-Component Catalytic Machinery: Reversible Three-State Control of Organocatalysis by Walking Back and Forth on a Track.
    Mittal N; Özer MS; Schmittel M
    Inorg Chem; 2018 Apr; 57(7):3579-3586. PubMed ID: 29227095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five-State Rotary Nanoswitch.
    Gaikwad S; Schmittel M
    J Org Chem; 2017 Jan; 82(1):343-352. PubMed ID: 28026181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of methylene blue and copper(II) ions by photoelectron catalytic oxidation using stannic oxide modified iron(III) oxide composite electrodes.
    Qi J; Li X; Zheng H; Li P; Wang H
    J Hazard Mater; 2015 Aug; 293():105-11. PubMed ID: 25855567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reversible nanoswitch as an ON-OFF photocatalyst.
    Schmittel M; Pramanik S; De S
    Chem Commun (Camb); 2012 Dec; 48(96):11730-2. PubMed ID: 23079778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.
    Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD
    J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-responsive copper(I) metallogel: a metal-organic hybrid sorbent for reductive removal of chromium(VI) from aqueous solution.
    Sarkar S; Dutta S; Bairi P; Pal T
    Langmuir; 2014 Jul; 30(26):7833-41. PubMed ID: 24926619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis.
    Bandy B; Walter PB; Moon J; Davison AJ
    Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene.
    Mathisen K; Stockenhuber M; Nicholson DG
    Phys Chem Chem Phys; 2009 Jul; 11(26):5476-88. PubMed ID: 19551218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.
    Kitanosono T; Xu P; Kobayashi S
    Chem Asian J; 2014 Jan; 9(1):179-88. PubMed ID: 24101583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous copper ion removal and hydrogen production from water over a TiO₂ nanotube photocatalyst.
    Xu S; Ng J; Wang Y; Du AJ; Sun DD
    Water Sci Technol; 2012; 65(3):533-8. PubMed ID: 22258686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A supported copper hydroxide on titanium oxide as an efficient reusable heterogeneous catalyst for 1,3-dipolar cycloaddition of organic azides to terminal alkynes.
    Yamaguchi K; Oishi T; Katayama T; Mizuno N
    Chemistry; 2009 Oct; 15(40):10464-72. PubMed ID: 19718725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II) ion coupling with DNAzyme-catalyzed precipitation strategy.
    Xu M; Gao Z; Wei Q; Chen G; Tang D
    Biosens Bioelectron; 2015 Dec; 74():1-7. PubMed ID: 26093122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.