These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28273517)

  • 81. Efficient down-regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity.
    Staswick PE; Zhang Z; Clemente TE; Specht JE
    Plant Physiol; 2001 Dec; 127(4):1819-26. PubMed ID: 11743125
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO
    Singh SK; Reddy VR
    Front Plant Sci; 2017; 8():991. PubMed ID: 28642785
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism.
    Price GD
    Photosynth Res; 2011 Sep; 109(1-3):47-57. PubMed ID: 21359551
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)?
    Driever SM; Kromdijk J
    J Exp Bot; 2013 Oct; 64(13):3925-35. PubMed ID: 23585671
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop.
    Głowacka K; Kromdijk J; Kucera K; Xie J; Cavanagh AP; Leonelli L; Leakey ADB; Ort DR; Niyogi KK; Long SP
    Nat Commun; 2018 Mar; 9(1):868. PubMed ID: 29511193
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.
    Kurai T; Wakayama M; Abiko T; Yanagisawa S; Aoki N; Ohsugi R
    Plant Biotechnol J; 2011 Oct; 9(8):826-37. PubMed ID: 21624033
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.
    Oikawa S; Ainsworth EA
    Environ Pollut; 2016 Aug; 215():347-355. PubMed ID: 27261884
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Multigene manipulation of photosynthetic carbon metabolism enhances the photosynthetic capacity and biomass yield of cucumber under low-CO
    Chen ZF; Wang TH; Feng CY; Guo HF; Guan XX; Zhang TL; Li WZ; Xing GM; Sun S; Tan GF
    Front Plant Sci; 2022; 13():1005261. PubMed ID: 36330244
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accelerating yield potential in soybean: potential targets for biotechnological improvement.
    Ainsworth EA; Yendrek CR; Skoneczka JA; Long SP
    Plant Cell Environ; 2012 Jan; 35(1):38-52. PubMed ID: 21689112
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Heterologous Expression of Key C and N Metabolic Enzymes Improves Re-assimilation of Photorespired CO
    Kaachra A; Vats SK; Kumar S
    Plant Physiol; 2018 Aug; 177(4):1396-1409. PubMed ID: 29891741
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.
    Jia Y; Yao X; Zhao M; Zhao Q; Du Y; Yu C; Xie F
    Int J Mol Sci; 2015 Aug; 16(8):18522-43. PubMed ID: 26262617
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Nod factor [Nod Bj V (C(18:1), MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean.
    Khan W; Prithiviraj B; Smith DL
    J Plant Physiol; 2008 Sep; 165(13):1342-51. PubMed ID: 18190997
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Generation of transplastomic lettuce with enhanced growth and high yield.
    Ichikawa Y; Tamoi M; Sakuyama H; Maruta T; Ashida H; Yokota A; Shigeoka S
    GM Crops; 2010; 1(5):322-6. PubMed ID: 21844689
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics.
    Cui Y; Barampuram S; Stacey MG; Hancock CN; Findley S; Mathieu M; Zhang Z; Parrott WA; Stacey G
    Plant Physiol; 2013 Jan; 161(1):36-47. PubMed ID: 23124322
    [TBL] [Abstract][Full Text] [Related]  

  • 96. C
    Lundgren MR
    New Phytol; 2020 Dec; 228(6):1734-1740. PubMed ID: 32080851
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Variability in soybean yield responses to elevated atmospheric CO
    Xu Y; Yu Z; Liu C; Hu Y; Zhang J; Liu J; Chen X; Liu J; Wang G; Liu X; Jin J; Li Y
    Plant Physiol Biochem; 2024 Aug; 213():108802. PubMed ID: 38852236
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Current and possible approaches for improving photosynthetic efficiency.
    Éva C; Oszvald M; Tamás L
    Plant Sci; 2019 Mar; 280():433-440. PubMed ID: 30824023
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.
    Koester RP; Skoneczka JA; Cary TR; Diers BW; Ainsworth EA
    J Exp Bot; 2014 Jul; 65(12):3311-21. PubMed ID: 24790116
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield.
    Betzelberger AM; Yendrek CR; Sun J; Leisner CP; Nelson RL; Ort DR; Ainsworth EA
    Plant Physiol; 2012 Dec; 160(4):1827-39. PubMed ID: 23037504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.