BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

844 related articles for article (PubMed ID: 28273811)

  • 21. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
    Hendriks WT; Ruitenberg MJ; Blits B; Boer GJ; Verhaagen J
    Prog Brain Res; 2004; 146():451-76. PubMed ID: 14699980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats.
    Li XL; Zhang W; Zhou X; Wang XY; Zhang HT; Qin DX; Zhang H; Li Q; Li M; Wang TH
    Neuropeptides; 2007 Jun; 41(3):135-43. PubMed ID: 17459471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury.
    Broude E; McAtee M; Kelley MS; Bregman BS
    Exp Neurol; 1999 Jan; 155(1):65-78. PubMed ID: 9918706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord.
    Oudega M; Hagg T
    Brain Res; 1999 Feb; 818(2):431-8. PubMed ID: 10082829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms.
    Curtis R; Tonra JR; Stark JL; Adryan KM; Park JS; Cliffer KD; Lindsay RM; DiStefano PS
    Mol Cell Neurosci; 1998 Oct; 12(3):105-18. PubMed ID: 9790733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endogenous neurotrophins and plasticity following spinal deafferentation.
    Ramer MS
    Exp Neurol; 2012 May; 235(1):70-7. PubMed ID: 21195072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain derived neurotrophic factor and neurotrophin-4 employ different intracellular pathways to modulate norepinephrine uptake and release in rat hypothalamus.
    Rodríguez Fermepin M; Trinchero M; Minetto J; Beltrán A; Fernández BE
    Neuropeptides; 2009 Aug; 43(4):275-82. PubMed ID: 19576631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons.
    DiStefano PS; Friedman B; Radziejewski C; Alexander C; Boland P; Schick CM; Lindsay RM; Wiegand SJ
    Neuron; 1992 May; 8(5):983-93. PubMed ID: 1375039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury.
    Sharma HS
    Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of neurotrophins in axonal growth, guidance, and regeneration.
    Lykissas MG; Batistatou AK; Charalabopoulos KA; Beris AE
    Curr Neurovasc Res; 2007 May; 4(2):143-51. PubMed ID: 17504212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury.
    Iarikov DE; Kim BG; Dai HN; McAtee M; Kuhn PL; Bregman BS
    J Neurotrauma; 2007 Apr; 24(4):690-702. PubMed ID: 17439351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord.
    McTigue DM; Horner PJ; Stokes BT; Gage FH
    J Neurosci; 1998 Jul; 18(14):5354-65. PubMed ID: 9651218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The neurotrophins BDNF, NT-3 and -4, but not NGF, TGF-beta 1 and GDNF, increase the number of NADPH-diaphorase-reactive neurons in rat spinal cord cultures.
    Huber KA; Krieglstein K; Unsicker K
    Neuroscience; 1995 Dec; 69(3):771-9. PubMed ID: 8596647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional regeneration of sensory axons into the adult spinal cord.
    Ramer MS; Priestley JV; McMahon SB
    Nature; 2000 Jan; 403(6767):312-6. PubMed ID: 10659850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential regulation of dendritic plasticity by neurotrophins following deafferentation of the adult spinal cord is independent of p75(NTR).
    Scott AL; Ramer MS
    Brain Res; 2010 Apr; 1323():48-58. PubMed ID: 20144886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotrophin small-molecule mimetics.
    Xie Y; Longo FM
    Prog Brain Res; 2000; 128():333-47. PubMed ID: 11105692
    [No Abstract]   [Full Text] [Related]  

  • 38. BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons.
    Friedman B; Kleinfeld D; Ip NY; Verge VM; Moulton R; Boland P; Zlotchenko E; Lindsay RM; Liu L
    J Neurosci; 1995 Feb; 15(2):1044-56. PubMed ID: 7869082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of electroacupuncture on neurotrophin expression in cat spinal cord after partial dorsal rhizotomy.
    Wang TH; Wang XY; Li XL; Chen HM; Wu LF
    Neurochem Res; 2007 Aug; 32(8):1415-22. PubMed ID: 17406982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function.
    Blits B; Oudega M; Boer GJ; Bartlett Bunge M; Verhaagen J
    Neuroscience; 2003; 118(1):271-81. PubMed ID: 12676157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.