BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28273864)

  • 81. [Chemical constituents of Hyperricum monogynum].
    Wang J; Peng SL; Wang MK; Chen NY; Ding LS
    Zhongguo Zhong Yao Za Zhi; 2002 Feb; 27(2):120-2. PubMed ID: 12774384
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Metabolomics assisted fingerprint of Hypericum perforatum chemotypes and assessment of their cytotoxic activity.
    Sarrou E; Giassafaki LP; Masuero D; Perenzoni D; Vizirianakis IS; Irakli M; Chatzopoulou P; Martens S
    Food Chem Toxicol; 2018 Apr; 114():325-333. PubMed ID: 29499307
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Inhibition of human cytochrome P450 enzymes by constituents of St. John's Wort, an herbal preparation used in the treatment of depression.
    Obach RS
    J Pharmacol Exp Ther; 2000 Jul; 294(1):88-95. PubMed ID: 10871299
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Tyrosinase inhibitors from Bolivian medicinal plants.
    Kubo I; Yokokawa Y; Kinst-Hori I
    J Nat Prod; 1995 May; 58(5):739-43. PubMed ID: 7623048
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase.
    Chen CH; Chan HC; Chu YT; Ho HY; Chen PY; Lee TH; Lee CK
    Molecules; 2009 Aug; 14(8):2947-58. PubMed ID: 19701137
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry.
    Shi F; Xie L; Lin Q; Tong C; Fu Q; Xu J; Xiao J; Shi S
    Food Chem; 2020 May; 312():126042. PubMed ID: 31911351
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Screening and identification of tyrosinase inhibitors in edible plant materials by on-line UPLC-enzyme reactor coupled with UHPLC-FTMS.
    Fang X; Dai L; Ding TM; Zhu Y; Zan JF; Chen LL; Ding XP; Liu JF
    Food Chem; 2023 Mar; 403():134331. PubMed ID: 36162264
    [TBL] [Abstract][Full Text] [Related]  

  • 88.
    Aljubiri SM; Elsalam EA; Abd El Hady FK; Radwan MO; Almansour AI; Shaker KH
    Z Naturforsch C J Biosci; 2023 May; 78(5-6):209-216. PubMed ID: 36321624
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Isolation and Identification of Tyrosinase-Inhibitory and Copper-Chelating Peptides from Hydrolyzed Rice-Bran-Derived Albumin.
    Kubglomsong S; Theerakulkait C; Reed RL; Yang L; Maier CS; Stevens JF
    J Agric Food Chem; 2018 Aug; 66(31):8346-8354. PubMed ID: 30016586
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evaluation of Chemical Composition and
    Ozkan EE; Ozsoy N; Ozden TY; Ozhan G; Mat A
    Iran J Pharm Res; 2018; 17(3):1036-1046. PubMed ID: 30127826
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fast screening of tyrosinase inhibitors from traditional Chinese medicinal plants by ligand fishing in combination with in situ fluorescent assay.
    Zhao Y; Hu JJ; Bai XL; Liu HP; Qi XW; Liao X
    Anal Bioanal Chem; 2022 Mar; 414(6):2265-2273. PubMed ID: 34982177
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Quercetin is a substrate not an inhibitor of tyrosinase - comments on "Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism" published by Fan et al. (2017).
    Wojtasek H
    Food Res Int; 2022 Mar; 153():110944. PubMed ID: 35227469
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Rapid screening of natural-origin tyrosinase regulators from Vernonia anthelmintica (L.) Willd. by offline two-dimensional liquid chromatography coupled with mass spectrometry.
    Bian GL; Wang DM; Cheng XJ; Li DQ
    J Pharm Biomed Anal; 2022 Sep; 219():114978. PubMed ID: 35930833
    [TBL] [Abstract][Full Text] [Related]  

  • 94. New Alk(en)ylhydroxycyclohexanes with Tyrosinase Inhibition Potential from
    Bodede O; More GK; Moodley R; Steenkamp P; Baijnath H; Maharaj V; Prinsloo G
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744961
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review.
    Saleem H; Yaqub A; Rafique R; Ali Chohan T; Malik DE; Tousif MI; Khurshid U; Ahemad N; Ramasubburayan R; Rengasamy KR
    Crit Rev Food Sci Nutr; 2023 May; ():1-24. PubMed ID: 37255100
    [TBL] [Abstract][Full Text] [Related]  

  • 96. High-throughput enzyme inhibition screening of 44 Iranian medicinal plants via piezoelectric spraying of planar cholinesterase assays.
    Azadniya E; Thomä I; Baake J; Morlock GE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Nov; 1184():122956. PubMed ID: 34655892
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hypericum species: An analysis on the patent technologies.
    de Carvalho Meirelles G; Bridi H; von Poser GL; Nemitz MC
    Fitoterapia; 2019 Nov; 139():104363. PubMed ID: 31629873
    [TBL] [Abstract][Full Text] [Related]  

  • 98. [Studies on the constituents of Patrinia villosa Juss].
    Taguchi H; Yokokawa Y; Endo T
    Yakugaku Zasshi; 1973 May; 93(5):607-11. PubMed ID: 4738257
    [No Abstract]   [Full Text] [Related]  

  • 99. Bioactive Potential: A Pharmacognostic Definition through the Screening of Four
    Lacret R; Puerta A; Granica S; González-Bakker A; Hevia D; Teng Y; Sánchez-Mateo CC; Pérez de Paz PL; Padrón JM
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144833
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    Gence L; Fernezelian D; Bringart M; Veeren B; Christophe A; Brion F; Meilhac O; Bascands JL; Diotel N
    Front Pharmacol; 2022; 13():832928. PubMed ID: 35359845
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.