BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28273925)

  • 1. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2.
    Hirano K; Kawamura M; Araki-Nakamura S; Fujimoto H; Ohmae-Shinohara K; Yamaguchi M; Fujii A; Sasaki H; Kasuga S; Sazuka T
    Sci Rep; 2017 Mar; 7(1):126. PubMed ID: 28273925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation.
    Yamaguchi M; Fujimoto H; Hirano K; Araki-Nakamura S; Ohmae-Shinohara K; Fujii A; Tsunashima M; Song XJ; Ito Y; Nagae R; Wu J; Mizuno H; Yonemaru J; Matsumoto T; Kitano H; Matsuoka M; Kasuga S; Sazuka T
    Sci Rep; 2016 Jun; 6():28366. PubMed ID: 27329702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Genotype Markers for Plant Height and Assisted Breeding of Key Sorghum Resources in China.
    Wang Y; Lv N; Yin F; Duan G; Niu H; Chu J; Yan H; Ju L; Fan F; Lv X; Ping J
    Genes (Basel); 2024 Jan; 15(1):. PubMed ID: 38254972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.
    Hilley J; Truong S; Olson S; Morishige D; Mullet J
    PLoS One; 2016; 11(3):e0151271. PubMed ID: 26963094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length.
    Hilley JL; Weers BD; Truong SK; McCormick RF; Mattison AJ; McKinley BA; Morishige DT; Mullet JE
    Sci Rep; 2017 Jul; 7(1):4616. PubMed ID: 28676627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deleterious mutations predicted in the sorghum (Sorghum bicolor) Maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing.
    Grant NP; Toy JJ; Funnell-Harris DL; Sattler SE
    Sci Rep; 2023 Oct; 13(1):16638. PubMed ID: 37789045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding.
    Ordonio RL; Ito Y; Hatakeyama A; Ohmae-Shinohara K; Kasuga S; Tokunaga T; Mizuno H; Kitano H; Matsuoka M; Sazuka T
    Sci Rep; 2014 Jun; 4():5287. PubMed ID: 24924234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis.
    Shimada A; Ueguchi-Tanaka M; Sakamoto T; Fujioka S; Takatsuto S; Yoshida S; Sazuka T; Ashikari M; Matsuoka M
    Plant J; 2006 Nov; 48(3):390-402. PubMed ID: 17052323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice.
    Tong H; Jin Y; Liu W; Li F; Fang J; Yin Y; Qian Q; Zhu L; Chu C
    Plant J; 2009 Jun; 58(5):803-16. PubMed ID: 19220793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase.
    Hao Y; Wang H; Qiao S; Leng L; Wang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10418-23. PubMed ID: 27562168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.
    Kim Y; Song JH; Park SU; Jeong YS; Kim SH
    Plant Cell Physiol; 2017 Feb; 58(2):227-239. PubMed ID: 28069895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
    Zhang S; Wang S; Xu Y; Yu C; Shen C; Qian Q; Geisler M; Jiang de A; Qi Y
    Plant Cell Environ; 2015 Apr; 38(4):638-54. PubMed ID: 24995795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Study for Biomass Related Traits in a Panel of
    Habyarimana E; De Franceschi P; Ercisli S; Baloch FS; Dall'Agata M
    Front Plant Sci; 2020; 11():551305. PubMed ID: 33281836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice.
    Liu C; Zheng S; Gui J; Fu C; Yu H; Song D; Shen J; Qin P; Liu X; Han B; Yang Y; Li L
    Mol Plant; 2018 Feb; 11(2):288-299. PubMed ID: 29253619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two homolog wheat Glycogen Synthase Kinase 3/SHAGGY--like kinases are involved in brassinosteroid signaling.
    Bittner T; Nadler S; Schulze E; Fischer-Iglesias C
    BMC Plant Biol; 2015 Oct; 15():247. PubMed ID: 26458871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of brassinosteroid genes in Brachypodium distachyon.
    Corvalán C; Choe S
    BMC Plant Biol; 2017 Jan; 17(1):5. PubMed ID: 28061864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the dwarf3 gene confer height stability in sorghum.
    Diatta-Holgate E; Bergsma B; Tuinstra MR
    Plant Genome; 2024 Jun; 17(2):e20466. PubMed ID: 38764298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling.
    Liu X; Yang CY; Miao R; Zhou CL; Cao PH; Lan J; Zhu XJ; Mou CL; Huang YS; Liu SJ; Tian YL; Nguyen TL; Jiang L; Wan JM
    Rice (N Y); 2018 Aug; 11(1):46. PubMed ID: 30084027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of
    Segami S; Takehara K; Yamamoto T; Kido S; Kondo S; Iwasaki Y; Miura K
    Breed Sci; 2017 Sep; 67(4):393-397. PubMed ID: 29085249
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Qiao J; Zhang Y; Han S; Chang S; Gao Z; Qi Y; Qian Q
    Front Plant Sci; 2022; 13():979033. PubMed ID: 36247537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.