BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28274413)

  • 1. Lysozyme distribution, structural identification, and in vitro release of starch-based microgel-lysozyme complexes.
    Zhang B; Tao H; Niu X; Li S; Chen HQ
    Food Chem; 2017 Jul; 227():137-141. PubMed ID: 28274413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities.
    Zhang B; Wei B; Hu X; Jin Z; Xu X; Tian Y
    Carbohydr Polym; 2015 Jun; 124():245-53. PubMed ID: 25839818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of starch-based microgel-lysozyme complexes using a layer-by-layer assembly technique.
    Zhang B; Pan Y; Chen H; Liu T; Tao H; Tian Y
    Food Chem; 2017 Jan; 214():213-217. PubMed ID: 27507468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between lysozyme and poly(acrylic acid) microgels.
    Johansson C; Hansson P; Malmsten M
    J Colloid Interface Sci; 2007 Dec; 316(2):350-9. PubMed ID: 17719601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel.
    Zhao L; Chen Y; Li W; Lu M; Wang S; Chen X; Shi M; Wu J; Yuan Q; Li Y
    Carbohydr Polym; 2015 May; 121():276-83. PubMed ID: 25659699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme.
    Zhang B; Tao H; Wei B; Jin Z; Xu X; Tian Y
    PLoS One; 2014; 9(12):e114634. PubMed ID: 25490774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysozyme uptake by oxidized starch polymer microgels.
    Li Y; de Vries R; Kleijn M; Slaghek T; Timmermans J; Stuart MC; Norde W
    Biomacromolecules; 2010 Jul; 11(7):1754-62. PubMed ID: 20518456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of lysozyme uptake in poly(acrylic acid) microgels.
    Johansson C; Hansson P; Malmsten M
    J Phys Chem B; 2009 May; 113(18):6183-93. PubMed ID: 19366242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients.
    Li Y; de Vries R; Slaghek T; Timmermans J; Cohen Stuart MA; Norde W
    Biomacromolecules; 2009 Jul; 10(7):1931-8. PubMed ID: 19453163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme.
    Zhang B; Sun B; Li X; Yu Y; Tian Y; Xu X; Jin Z
    Int J Biol Macromol; 2015 Aug; 79():392-7. PubMed ID: 26001494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of controlled uptake and release of anthocyanins by oxidized starch microgels.
    Wang Z; Li Y; Chen L; Xin X; Yuan Q
    J Agric Food Chem; 2013 Jun; 61(24):5880-7. PubMed ID: 23711203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysozyme uptake and release by oxidized starch polymer microgels.
    Li Y; Kleijn M; Slaghek T; Timmermans J; Stuart MC; Norde W
    J Control Release; 2010 Nov; 148(1):e45-6. PubMed ID: 21529618
    [No Abstract]   [Full Text] [Related]  

  • 13. Structural and mechanistic insights into starch microgel/anthocyanin complex assembly and controlled release performance.
    Chen L; Zhang D; Wei LF; Zhu WJ; Yan XQ; Zhou R; Din ZU; Ding WP; Ma TZ; Cai J
    Int J Biol Macromol; 2022 Jul; 213():718-727. PubMed ID: 35636527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward function starch nanogels by self-assembly of polysaccharide and protein: From synthesis to potential for polyphenol delivery.
    An J; Liu M; Din ZU; Xie F; Cai J
    Int J Biol Macromol; 2023 Aug; 247():125697. PubMed ID: 37423442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of protein-loaded starch microgel by polyelectrolytes.
    Li Y; Norde W; Kleijn JM
    Langmuir; 2012 Jan; 28(2):1545-51. PubMed ID: 22149363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between homopolypeptides and lightly cross-linked microgels.
    Bysell H; Malmsten M
    Langmuir; 2009 Jan; 25(1):522-8. PubMed ID: 19061315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The changes of secondary structures and properties of lysozyme along with the egg storage.
    Sheng L; Wang J; Huang M; Xu Q; Ma M
    Int J Biol Macromol; 2016 Nov; 92():600-606. PubMed ID: 27456121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization.
    Hu D; Zhang Z; Yuan L; Li W; Guo Y; Zhang R; Yang X; Peng H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):127-136. PubMed ID: 34699889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology.
    Torres O; Tena NM; Murray B; Sarkar A
    Carbohydr Polym; 2017 Dec; 178():86-94. PubMed ID: 29050619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High ionic liquid concentration-induced structural change of protein in aqueous solution: a case study of lysozyme.
    Takekiyo T; Yamazaki K; Yamaguchi E; Abe H; Yoshimura Y
    J Phys Chem B; 2012 Sep; 116(36):11092-7. PubMed ID: 22946791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.