BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28274449)

  • 1. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe
    Xie W; Zang X
    Food Chem; 2017 Jul; 227():397-403. PubMed ID: 28274449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard.
    Xie W; Zang X
    Food Chem; 2016 Mar; 194():1283-92. PubMed ID: 26471683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst.
    Zang X; Xie W
    J Oleo Sci; 2014; 63(10):1027-34. PubMed ID: 25213444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats.
    Xie W; Zang X
    Food Chem; 2018 Aug; 257():15-22. PubMed ID: 29622191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interesterification of soybean oil and lard blends catalyzed by SBA-15-pr-NR₃OH as a heterogeneous base catalyst.
    Xie W; Qi C
    J Agric Food Chem; 2013 Apr; 61(14):3373-81. PubMed ID: 23510139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of trans-free interesterified fat using indigenously immobilized lipase.
    Kavadia MR; Yadav MG; Vadgama RN; Odaneth AA; Lali AM
    Prep Biochem Biotechnol; 2019; 49(5):444-452. PubMed ID: 30861359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Analysis of Positional Fatty Acid Distributions in Triacylglycerols by 1(3)-Selective Transesterification with Candida antarctica Lipase B: a Collaborative Study.
    Watanabe Y; Sato S; Asada M; Arishima T; Iida Y; Imagi J; Saito K; Sano T; Sasaki A; Sasaki R; Sato C; Shibuya T; Tsukahara Y; Nagai T; Fukazawa T; Hori R; Homma R; Miyazaki Y; Yamashita A; Yoshinaga K; Watanabe S
    J Oleo Sci; 2015; 64(11):1193-205. PubMed ID: 26521812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C; Qi Z; Zhu H
    Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.
    Lopes TI; Ribeiro MD; Ming CC; Grimaldi R; Gonçalves LA; Marsaioli AJ
    Food Chem; 2016 Dec; 212():641-7. PubMed ID: 27374579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis.
    Li K; Fan Y; He Y; Zeng L; Han X; Yan Y
    Sci Rep; 2017 Nov; 7(1):16473. PubMed ID: 29184106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM.
    Zhao ML; Tang L; Zhu XM; Hu JN; Li HY; Luo LP; Lei L; Deng ZY
    J Agric Food Chem; 2013 Feb; 61(6):1189-95. PubMed ID: 23350869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Minor Components of Crude Vegetable Oil on the Enzymatic Method to Analyze Positional Fatty Acid Distributions in Triacylglycerols withCandida antarctica Lipase B.
    Hori R; Sano T; Imagi J; Watanabe Y
    J Oleo Sci; 2016 Nov; 65(11):923-928. PubMed ID: 27733742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.
    Illiyin MR; Marikkar JM; Loke MK; Shuhaimi M; Mahiran B; Miskandar MS
    J Oleo Sci; 2014; 63(1):39-46. PubMed ID: 24389796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Candida rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production.
    Domingues O; Remonatto D; Dos Santos LK; Galán JPM; Flumignan DL; de Paula AV
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5419-5442. PubMed ID: 35789983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters.
    Ozyilmaz E; Etci K; Sezgin M
    Prep Biochem Biotechnol; 2018; 48(10):887-897. PubMed ID: 30296382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of immobilized lipase Thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction.
    Saw MH; Siew WL
    J Oleo Sci; 2014; 63(3):295-302. PubMed ID: 24492381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
    Singh AK; Mukhopadhyay M
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of porous hollow Fe
    Liu X
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):771-779. PubMed ID: 29442184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen.
    Ghofrani S; Allameh A; Yaghmaei P; Norouzian D
    Daru; 2021 Jun; 29(1):117-123. PubMed ID: 33528796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.