BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 28274760)

  • 21. Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data.
    Comoglio F; Sievers C; Paro R
    BMC Bioinformatics; 2015 Feb; 16():32. PubMed ID: 25638391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovering sequence and structure landscapes in RNA interaction motifs.
    Adinolfi M; Pietrosanto M; Parca L; Ausiello G; Ferrè F; Helmer-Citterich M
    Nucleic Acids Res; 2019 Jun; 47(10):4958-4969. PubMed ID: 31162604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution.
    Yang S; Wang J; Ng RT
    BMC Bioinformatics; 2018 Mar; 19(1):96. PubMed ID: 29529991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins.
    Van Nostrand EL; Gelboin-Burkhart C; Wang R; Pratt GA; Blue SM; Yeo GW
    Methods; 2017 Apr; 118-119():50-59. PubMed ID: 28003131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data.
    Fukunaga T; Ozaki H; Terai G; Asai K; Iwasaki W; Kiryu H
    Genome Biol; 2014 Jan; 15(1):R16. PubMed ID: 24447569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and bioinformatics analysis of genome-wide CLIP experiments.
    Wang T; Xiao G; Chu Y; Zhang MQ; Corey DR; Xie Y
    Nucleic Acids Res; 2015 Jun; 43(11):5263-74. PubMed ID: 25958398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
    Dominguez D; Freese P; Alexis MS; Su A; Hochman M; Palden T; Bazile C; Lambert NJ; Van Nostrand EL; Pratt GA; Yeo GW; Graveley BR; Burge CB
    Mol Cell; 2018 Jun; 70(5):854-867.e9. PubMed ID: 29883606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practical considerations on performing and analyzing CLIP-seq experiments to identify transcriptomic-wide RNA-protein interactions.
    Chen X; Castro SA; Liu Q; Hu W; Zhang S
    Methods; 2019 Feb; 155():49-57. PubMed ID: 30527764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.
    González-Buendía E; Saldaña-Meyer R; Meier K; Recillas-Targa F
    Methods Mol Biol; 2015; 1288():413-28. PubMed ID: 25827894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
    Taliaferro JM; Lambert NJ; Sudmant PH; Dominguez D; Merkin JJ; Alexis MS; Bazile C; Burge CB
    Mol Cell; 2016 Oct; 64(2):294-306. PubMed ID: 27720642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome-Wide Mapping of Protein-RNA Interactions.
    Bi X; Shen X
    Methods Mol Biol; 2020; 2161():161-173. PubMed ID: 32681512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide identification of protein binding sites on RNAs in mammalian cells.
    Liu F; Ma T; Zhang Y
    Biochem Biophys Res Commun; 2019 Jan; 508(3):953-958. PubMed ID: 30545631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein-RNA interactions with high accuracy.
    Zhao Y; Zhang Y; Teng Y; Liu K; Liu Y; Li W; Wu L
    Nucleic Acids Res; 2019 Apr; 47(6):e33. PubMed ID: 30715466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PAR-CLIP: A Method for Transcriptome-Wide Identification of RNA Binding Protein Interaction Sites.
    Danan C; Manickavel S; Hafner M
    Methods Mol Biol; 2016; 1358():153-73. PubMed ID: 26463383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. dCLIP: a computational approach for comparative CLIP-seq analyses.
    Wang T; Xie Y; Xiao G
    Genome Biol; 2014 Jan; 15(1):R11. PubMed ID: 24398258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.