BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 28274765)

  • 1. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.
    Ng JL; Collins CE; Knothe Tate ML
    Acta Biomater; 2017 Jul; 56():14-24. PubMed ID: 28274765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure prediction model for compression garment design.
    Leung WY; Yuen DW; Ng SP; Shi SQ
    J Burn Care Res; 2010; 31(5):716-27. PubMed ID: 20628306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textile-based compression therapy in managing chronic oedema: Complex interactions.
    Kankariya N; Laing RM; Wilson CA
    Phlebology; 2021 Mar; 36(2):100-113. PubMed ID: 32819205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
    Yeoman MS; Reddy D; Bowles HC; Bezuidenhout D; Zilla P; Franz T
    Biomaterials; 2010 Nov; 31(32):8484-93. PubMed ID: 20688383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications.
    Wang Y; Liu X; Zhu C; Parsons A; Liu J; Huang S; Ahmed I; Rudd C; Sharmin N
    J Mech Behav Biomed Mater; 2019 Nov; 99():47-55. PubMed ID: 31344522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients.
    Ng JL; Putra VDL; Knothe Tate ML
    J Mech Behav Biomed Mater; 2020 Mar; 103():103536. PubMed ID: 32090942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability.
    Almeida LR; Martins AR; Fernandes EM; Oliveira MB; Mano JF; Correlo VM; Pashkuleva I; Marques AP; Ribeiro AS; Durães NF; Silva CJ; Bonifácio G; Sousa RA; Oliveira AL; Reis RL
    Acta Biomater; 2013 Sep; 9(9):8167-81. PubMed ID: 23727248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human textiles: A cell-synthesized yarn as a truly "bio" material for tissue engineering applications.
    Magnan L; Labrunie G; Fénelon M; Dusserre N; Foulc MP; Lafourcade M; Svahn I; Gontier E; Vélez V JH; McAllister TN; L'Heureux N
    Acta Biomater; 2020 Mar; 105():111-120. PubMed ID: 31996332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein mechanics: from single molecules to functional biomaterials.
    Li H; Cao Y
    Acc Chem Res; 2010 Oct; 43(10):1331-41. PubMed ID: 20669937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and application of textile-based tissue engineering scaffolds: a review.
    Jiao Y; Li C; Liu L; Wang F; Liu X; Mao J; Wang L
    Biomater Sci; 2020 Jul; 8(13):3574-3600. PubMed ID: 32555780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
    Akbari M; Tamayol A; Bagherifard S; Serex L; Mostafalu P; Faramarzi N; Mohammadi MH; Khademhosseini A
    Adv Healthc Mater; 2016 Apr; 5(7):751-66. PubMed ID: 26924450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.
    Liu Z; Zhu Y; Jiao D; Weng Z; Zhang Z; Ritchie RO
    Acta Biomater; 2016 Oct; 44():31-40. PubMed ID: 27503833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EXPERIMENTAL INVESTIGATION OF THE MECHANISMS AND PERFORMANCE OF ACTIVE AUXETIC AND SHEARING TEXTILES.
    Granberry R; Holschuh B; Abel J
    Proc ASME Conf Smart Mater Adapt Struct Intell Syst; 2019 Sep; 2019():. PubMed ID: 32083256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrous biomaterials: Effect of textile topography on foreign body reaction.
    Girault E; Biguenet F; Eidenschenk A; Dupuis D; Barbet R; Heim F
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1512-1524. PubMed ID: 33523550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonwoven Textiles from Hyaluronan for Wound Healing Applications.
    Kubíčková J; Medek T; Husby J; Matonohová J; Vágnerová H; Marholdová L; Velebný V; Chmelař J
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical performance of additively manufactured meta-biomaterials.
    Zadpoor AA
    Acta Biomater; 2019 Feb; 85():41-59. PubMed ID: 30590181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Fabric Movement for Future E-Textile Sensors.
    Ketola R; Mishra V; Kiourti A
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.