These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28274854)

  • 1. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.
    Sardar T; Rana S; Bhattacharya S; Al-Khaled K; Chattopadhyay J
    Math Biosci; 2015 May; 263():18-36. PubMed ID: 25645185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts.
    Focks DA; Brenner RJ; Hayes J; Daniels E
    Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.
    Otero M; Solari HG
    Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China.
    Musa SS; Zhao S; Chan HS; Jin Z; He DH
    Math Biosci Eng; 2019 Apr; 16(5):3841-3863. PubMed ID: 31499639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of reproduction number and probable vector density of the first autochthonous dengue outbreak in Japan in the last 70 years.
    Furuya H
    Environ Health Prev Med; 2015 Nov; 20(6):466-71. PubMed ID: 26298188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment.
    Kao YH; Eisenberg MC
    Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013-14.
    Sardar T; Sasmal SK; Chattopadhyay J
    Virulence; 2016; 7(2):187-200. PubMed ID: 26646355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the effects of temperature on dengue transmission.
    Yang HM; Macoris ML; Galvani KC; Andrighetti MT; Wanderley DM
    Epidemiol Infect; 2009 Aug; 137(8):1179-87. PubMed ID: 19192323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new model of dengue fever in terms of fractional derivative.
    Fatmawati F; Jan R; Khan MA; Khan Y; Ullah S
    Math Biosci Eng; 2020 Aug; 17(5):5267-5287. PubMed ID: 33120552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population.
    Nipa KF; Jang SR; Allen LJS
    Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil.
    Favier C; Degallier N; Rosa-Freitas MG; Boulanger JP; Costa Lima JR; Luitgards-Moura JF; Menkès CE; Mondet B; Oliveira C; Weimann ET; Tsouris P
    Trop Med Int Health; 2006 Mar; 11(3):332-40. PubMed ID: 16553913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backward bifurcations in dengue transmission dynamics.
    Garba SM; Gumel AB; Abu Bakar MR
    Math Biosci; 2008 Sep; 215(1):11-25. PubMed ID: 18573507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fractional Order Recovery SIR Model from a Stochastic Process.
    Angstmann CN; Henry BI; McGann AV
    Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection.
    Massad E; Coutinho FA; Burattini MN; Amaku M
    Trop Med Int Health; 2010 Jan; 15(1):120-6. PubMed ID: 19891761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil.
    Luz PM; Codeço CT; Massad E; Struchiner CJ
    Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):871-8. PubMed ID: 14765541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional epidemic model of coronavirus disease with vaccination and crowding effects.
    Saleem S; Rafiq M; Ahmed N; Arif MS; Raza A; Iqbal Z; Niazai S; Khan I
    Sci Rep; 2024 Apr; 14(1):8157. PubMed ID: 38589475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.