These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28274854)

  • 21. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue.
    Coutinho FA; Burattini MN; Lopez LF; Massad E
    Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating the effective reproduction number of dengue considering temperature-dependent generation intervals.
    Codeço CT; Villela DAM; Coelho FC
    Epidemics; 2018 Dec; 25():101-111. PubMed ID: 29945778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.
    Jafaruddin ; Indratno SW; Nuraini N; Supriatna AK; Soewono E
    Comput Math Methods Med; 2015; 2015():206131. PubMed ID: 26413140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A network model for control of dengue epidemic using sterile insect technique.
    Mishra A; Ambrosio B; Gakkhar S; Aziz-Alaoui MA
    Math Biosci Eng; 2018 Apr; 15(2):441-460. PubMed ID: 29161844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.
    Morin CW; Monaghan AJ; Hayden MH; Barrera R; Ernst K
    PLoS Negl Trop Dis; 2015 Aug; 9(8):e0004002. PubMed ID: 26275146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States.
    Butterworth MK; Morin CW; Comrie AC
    Environ Health Perspect; 2017 Apr; 125(4):579-585. PubMed ID: 27713106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami.
    Robert MA; Christofferson RC; Silva NJ; Vasquez C; Mores CN; Wearing HJ
    PLoS One; 2016; 11(8):e0161365. PubMed ID: 27532496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastic dynamics of dengue epidemics.
    de Souza DR; Tomé T; Pinho ST; Barreto FR; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012709. PubMed ID: 23410361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal control strategies for dengue fever spread in Johor, Malaysia.
    Abidemi A; Aziz NAB
    Comput Methods Programs Biomed; 2020 Nov; 196():105585. PubMed ID: 32554024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives.
    Hamdan N'; Kilicman A
    Bull Math Biol; 2022 Oct; 84(12):138. PubMed ID: 36287255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Dengue Transmission Dynamic Model by Stability and Hopf Bifurcation with Two-Time Delays.
    Murugadoss PR; Ambalarajan V; Sivakumar V; Dhandapani PB; Baleanu D
    Front Biosci (Landmark Ed); 2023 Jun; 28(6):117. PubMed ID: 37395028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of reproduction number and non stationary spectral analysis of dengue epidemic.
    Enduri MK; Jolad S
    Math Biosci; 2017 Jun; 288():140-148. PubMed ID: 28389269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competitive exclusion in a vector-host epidemic model with distributed delay(†).
    Cai LM; Martcheva M; Li XZ
    J Biol Dyn; 2013; 7 Suppl 1(Suppl 1):47-67. PubMed ID: 23421610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.