These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28276055)

  • 1. Patterns of long bone growth in a mid-19th century documented sample of the urban poor from Bethnal Green, London, UK.
    Ives R; Humphrey L
    Am J Phys Anthropol; 2017 May; 163(1):173-186. PubMed ID: 28276055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endochondral growth disruption during vitamin D deficiency rickets in a mid-19th century series from Bethnal Green, London, UK.
    Ives R; Humphrey L
    Am J Phys Anthropol; 2018 Nov; 167(3):585-601. PubMed ID: 30129025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-population analysis of the growth of long bones and the os coxae of three Early Medieval Austrian populations.
    Pinhasi R; Teschler-Nicola M; Knaus A; Shaw P
    Am J Hum Biol; 2005; 17(4):470-88. PubMed ID: 15981184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drifting Diaphyses: Asymmetry in Diametric Growth and Adaptation Along the Humeral and Femoral Length.
    Maggiano IS; Maggiano CM; Tiesler VG; Chi-Keb JR; Stout SD
    Anat Rec (Hoboken); 2015 Oct; 298(10):1689-99. PubMed ID: 26224448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone growth, limb proportions and non-specific stress in archaeological populations from Croatia.
    Pinhasi R; Timpson A; Thomas M; Slaus M
    Ann Hum Biol; 2014; 41(2):127-37. PubMed ID: 24102550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The daily grind: Sex- and age-related activity patterns inferred from cross-sectional geometry of long bones in a pre-Columbian muisca population from Tibanica, Colombia.
    Miller MJ; Agarwal SC; Aristizabal L; Langebaek C
    Am J Phys Anthropol; 2018 Oct; 167(2):311-326. PubMed ID: 30192371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age estimation of immature human skeletal remains from the metaphyseal and epiphyseal widths of the long bones in the post-natal period.
    Cardoso HF; Vandergugten JM; Humphrey LT
    Am J Phys Anthropol; 2017 Jan; 162(1):19-35. PubMed ID: 27613447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior.
    Nadell JA; Elton S; Kovarovic K
    Am J Phys Anthropol; 2021 Feb; 174(2):327-351. PubMed ID: 33368154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal growth in early and late Neolithic foragers from the Cis-Baikal region of Eastern Siberia.
    Temple DH; Bazaliiskii VI; Goriunova OI; Weber AW
    Am J Phys Anthropol; 2014 Mar; 153(3):377-86. PubMed ID: 24264164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the femur--implications for age and sex determination.
    Rissech C; Schaefer M; Malgosa A
    Forensic Sci Int; 2008 Aug; 180(1):1-9. PubMed ID: 18692331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morbidity, rickets and long-bone growth in post-medieval Britain--a cross-population analysis.
    Pinhasi R; Shaw P; White B; Ogden AR
    Ann Hum Biol; 2006; 33(3):372-89. PubMed ID: 17092873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal growth of children from the Iron Age site at K2 (South Africa).
    Steyn M; Henneberg M
    Am J Phys Anthropol; 1996 Jul; 100(3):389-96. PubMed ID: 8798995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infant and juvenile growth in ancestral Pueblo Indians.
    Schillaci MA; Nikitovic D; Akins NJ; Tripp L; Palkovich AM
    Am J Phys Anthropol; 2011 Jun; 145(2):318-26. PubMed ID: 21469079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for estimating age of Danish medieval sub-adults based on long bone length.
    Primeau C; Friis L; Sejrsen B; Lynnerup N
    Anthropol Anz; 2012 Jul; 69(3):317-33. PubMed ID: 22928354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of subadult skeletal and dental development based on living and deceased samples.
    Stull KE; Wolfe CA; Corron LK; Heim K; Hulse CN; Pilloud MA
    Am J Phys Anthropol; 2021 May; 175(1):36-58. PubMed ID: 33245147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using multivariate adaptive regression splines to estimate subadult age from diaphyseal dimensions.
    Stull KE; L'Abbé EN; Ousley SD
    Am J Phys Anthropol; 2014 Jul; 154(3):376-86. PubMed ID: 24782395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of socioeconomic status on endochondral and appositional bone growth, and acquisition of cortical bone in children from 19th century Birmingham, England.
    Mays S; Ives R; Brickley M
    Am J Phys Anthropol; 2009 Nov; 140(3):410-6. PubMed ID: 19425094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk Minimization and a Late Holocene Increase in Mobility at Roonka Flat, South Australia: An Analysis of Lower Limb Bone Diaphyseal Shape.
    Hill EC; Durband AC; Walshe K
    Am J Phys Anthropol; 2016 Sep; 161(1):94-103. PubMed ID: 27192401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting skeletal growth in the past from a functional and physiological perspective.
    Ruff CB; Garofalo E; Holmes MA
    Am J Phys Anthropol; 2013 Jan; 150(1):29-37. PubMed ID: 23283662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.