These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28276247)

  • 21. Surface Ligand Influences the Cu Nanoclusters as a Dual Sensing Optical Probe for Localized pH Environment and Fluoride Ion.
    Busi KB; Das S; Palanivel M; Ghosh KK; Gulyás B; Padmanabhan P; Chakrabortty S
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device.
    Zhang LP; Zhang XX; Hu B; Shen LM; Chen XW; Wang JH
    Analyst; 2012 Nov; 137(21):4974-80. PubMed ID: 22968007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colorimetric detection toward halide ions by a silver nanocluster hydrogel.
    Ma Y; Shen XF; Liu F; Pang YH
    Talanta; 2020 May; 211():120717. PubMed ID: 32070619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence detection of melamine based on inhibiting Cu
    Ren SH; Liu SG; Ling Y; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():112-118. PubMed ID: 29742485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose.
    Zhang W; Ma D; Du J
    Talanta; 2014 Mar; 120():362-7. PubMed ID: 24468383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.
    Yu Z; Park Y; Chen L; Zhao B; Jung YM; Cong Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23472-80. PubMed ID: 26437325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colorimetric detection of hydrogen peroxide and lactate based on the etching of the carbon based Au-Ag bimetallic nanocomposite synthesized by carbon dots as the reductant and stabilizer.
    Zhang L; Hou W; Lu Q; Liu M; Chen C; Zhang Y; Yao S
    Anal Chim Acta; 2016 Dec; 947():23-31. PubMed ID: 27846986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water.
    Jin L; Zhang Z; Tang A; Li C; Shen Y
    Biosens Bioelectron; 2016 May; 79():108-13. PubMed ID: 26703988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The synthesis of Cu nanoclusters and their dual mode colorimetric and fluorescent sensing for 2,4-dinitrophenol.
    Xie R; Zhang N; Qu Y; Tang M; Zhang F; Chai F; Su Z
    Nanotechnology; 2021 Oct; 33(2):. PubMed ID: 34598166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid.
    Su YT; Lan GY; Chen WY; Chang HT
    Anal Chem; 2010 Oct; 82(20):8566-72. PubMed ID: 20873802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions.
    Liu ZC; Qi JW; Hu C; Zhang L; Song W; Liang RP; Qiu JD
    Anal Chim Acta; 2015 Oct; 895():95-103. PubMed ID: 26454464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.
    Gao J; Xing F; Bai Y; Zhu S
    Dalton Trans; 2014 Jun; 43(21):7964-78. PubMed ID: 24715002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing.
    Zhou TY; Lin LP; Rong MC; Jiang YQ; Chen X
    Anal Chem; 2013 Oct; 85(20):9839-44. PubMed ID: 24016136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.
    Bekdeşer B; Özyürek M; Güçlü K; Alkan FÜ; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():485-90. PubMed ID: 24887508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A functional FePt@MOFs (MIL-101(Fe)) nano-platform for high efficient colorimetric determination of H
    Hu Z; Yin Y; Liu Q; Zheng X
    Analyst; 2019 Apr; 144(8):2716-2724. PubMed ID: 30865189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles.
    Liu R; Chen Z; Wang S; Qu C; Chen L; Wang Z
    Talanta; 2013 Aug; 112():37-42. PubMed ID: 23708534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some new details of the copper-hydrogen peroxide interaction.
    Pecci L; Montefoschi G; Cavallini D
    Biochem Biophys Res Commun; 1997 Jun; 235(1):264-7. PubMed ID: 9196074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.
    Li RD; Wang Q; Yin BC; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():995-1000. PubMed ID: 26547010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A selectively fluorescein-based colorimetric probe for detecting copper(II) ion.
    Zhang L; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():54-9. PubMed ID: 24929315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Highly Sensitive Colorimetric Method for Copper Ions Detection Based on Controlling the Peroxidase-like Activity of Au@Pt Nanocatalysts.
    Wang YF; Pan N; Peng CF
    Anal Sci; 2017; 33(3):321-325. PubMed ID: 28302973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.