BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28276499)

  • 1. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleT
    Fang B; Xu H; Liu Y; Qi F; Zhang W; Chen H; Wang C; Wang Y; Yang W; Li S
    Sci Rep; 2017 Mar; 7():44258. PubMed ID: 28276499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleT
    Matthews S; Belcher JD; Tee KL; Girvan HM; McLean KJ; Rigby SE; Levy CW; Leys D; Parker DA; Blankley RT; Munro AW
    J Biol Chem; 2017 Mar; 292(12):5128-5143. PubMed ID: 28053093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of alkenes and novel secondary products by P450 OleT
    Matthews S; Tee KL; Rattray NJ; McLean KJ; Leys D; Parker DA; Blankley RT; Munro AW
    FEBS Lett; 2017 Mar; 591(5):737-750. PubMed ID: 28144940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium.
    Belcher J; McLean KJ; Matthews S; Woodward LS; Fisher K; Rigby SEJ; Nelson DR; Potts D; Baynham MT; Parker DA; Leys D; Munro AW
    J Biol Chem; 2014 Mar; 289(10):6535-6550. PubMed ID: 24443585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the substrate scope and reactivity of cytochrome P450 OleT.
    Hsieh CH; Makris TM
    Biochem Biophys Res Commun; 2016 Aug; 476(4):462-466. PubMed ID: 27246733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of P450 OleT
    Du J; Liu L; Guo LZ; Yao XJ; Yang JM
    J Comput Aided Mol Des; 2017 May; 31(5):483-495. PubMed ID: 28342136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species.
    Rude MA; Baron TS; Brubaker S; Alibhai M; Del Cardayre SB; Schirmer A
    Appl Environ Microbiol; 2011 Mar; 77(5):1718-27. PubMed ID: 21216900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property.
    Jiang Y; Li Z; Wang C; Zhou YJ; Xu H; Li S
    Biotechnol Biofuels; 2019; 12():79. PubMed ID: 30996734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry.
    Hsieh CH; Huang X; Amaya JA; Rutland CD; Keys CL; Groves JT; Austin RN; Makris TM
    Biochemistry; 2017 Jul; 56(26):3347-3357. PubMed ID: 28603981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase.
    Liu Y; Wang C; Yan J; Zhang W; Guan W; Lu X; Li S
    Biotechnol Biofuels; 2014 Feb; 7(1):28. PubMed ID: 24565055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Propene from n-Butanol: A Three-Step Cascade Utilizing the Cytochrome P450 Fatty Acid Decarboxylase OleT
    Bauer D; Zachos I; Sieber V
    Chembiochem; 2020 Nov; 21(22):3273-3281. PubMed ID: 32656928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT.
    Grant JL; Mitchell ME; Makris TM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10049-54. PubMed ID: 27555591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT
    Chowdhury AS; Ali HS; Faponle AS; de Visser SP
    Phys Chem Chem Phys; 2020 Dec; 22(46):27178-27190. PubMed ID: 33226036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Behaviors of a Substrate in P450 Decarboxylase and Hydroxylase Reveal Reactivity-Enabling Actors.
    Bharadwaj VS; Kim S; Guarnieri MT; Crowley MF
    Sci Rep; 2018 Aug; 8(1):12826. PubMed ID: 30150737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics-based profiling of three terminal alkene-producing Jeotgalicoccus spp. during different growth phase.
    Nusantara Putra FJ; Putri SP; Fukusaki E
    J Biosci Bioeng; 2019 Jan; 127(1):52-58. PubMed ID: 30057157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases.
    Xu H; Ning L; Yang W; Fang B; Wang C; Wang Y; Xu J; Collin S; Laeuffer F; Fourage L; Li S
    Biotechnol Biofuels; 2017; 10():208. PubMed ID: 28912830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Product Distributions of Cytochrome P450 OleT
    Lin YT; de Visser SP
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the Regioselective Fatty-Acid Hydroxylation versus Decarboxylation by a Cytochrome P450 Peroxygenase: What Drives the Reaction to Biofuel Production?
    Faponle AS; Quesne MG; de Visser SP
    Chemistry; 2016 Apr; 22(16):5478-83. PubMed ID: 26918676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.