BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28276535)

  • 1. Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies.
    Jiang H; Zhang J; Han Z; Yang J; Ge C; Wu Q
    Sci Rep; 2017 Mar; 7():44294. PubMed ID: 28276535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling.
    Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S
    Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.
    Li Z; Xu C; Li K; Yan S; Qu X; Zhang J
    BMC Plant Biol; 2012 Jun; 12():89. PubMed ID: 22704465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.).
    Torres-Rodríguez JV; Salazar-Vidal MN; Chávez Montes RA; Massange-Sánchez JA; Gillmor CS; Sawers RJH
    BMC Plant Biol; 2021 Jun; 21(1):259. PubMed ID: 34090337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of root library by SSH and preliminary analysis of genes responsible for phosphorus deficiency in maize.
    Huang Q; Gao SB; Zhang ZM; Lin HJ; Pan GT; Yang KC; Rong TZ
    Genetika; 2010 Dec; 46(12):1619-25. PubMed ID: 21428250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional responses of maize seedling root to phosphorus starvation.
    Lin HJ; Gao J; Zhang ZM; Shen YO; Lan H; Liu L; Xiang K; Zhao M; Zhou S; Zhang YZ; Gao SB; Pan GT
    Mol Biol Rep; 2013 Sep; 40(9):5359-79. PubMed ID: 23670044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field.
    Li D; Wang H; Wang M; Li G; Chen Z; Leiser WL; Weiß TM; Lu X; Wang M; Chen S; Chen F; Yuan L; Würschum T; Liu W
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The maize CorA/MRS2/MGT-type Mg transporter, ZmMGT10, responses to magnesium deficiency and confers low magnesium tolerance in transgenic Arabidopsis.
    Li H; Wang N; Ding J; Liu C; Du H; Huang K; Cao M; Lu Y; Gao S; Zhang S
    Plant Mol Biol; 2017 Oct; 95(3):269-278. PubMed ID: 28871377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize.
    Du Q; Wang K; Xu C; Zou C; Xie C; Xu Y; Li WX
    BMC Plant Biol; 2016 Oct; 16(1):222. PubMed ID: 27724863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey.
    Trevisan S; Manoli A; Ravazzolo L; Botton A; Pivato M; Masi A; Quaggiotti S
    J Exp Bot; 2015 Jul; 66(13):3699-715. PubMed ID: 25911739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Transcriptome and Proteome Analysis of Maize (
    Nie Z; Luo B; Zhang X; Wu L; Liu D; Guo J; He X; Gao D; Gao S; Gao S
    Curr Issues Mol Biol; 2021 Sep; 43(2):1142-1155. PubMed ID: 34563050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P.
    Azevedo GC; Cheavegatti-Gianotto A; Negri BF; Hufnagel B; E Silva Lda C; Magalhaes JV; Garcia AA; Lana UG; de Sousa SM; Guimaraes CT
    BMC Plant Biol; 2015 Jul; 15():172. PubMed ID: 26148492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.
    Huang Q; Wang M; Xia Z
    J Plant Physiol; 2018 Jan; 220():24-33. PubMed ID: 29145069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize.
    Wang X; Yuan D; Liu Y; Liang Y; He J; Yang X; Hang R; Jia H; Mo B; Tian F; Chen X; Liu L
    Plant Cell; 2023 May; 35(6):2208-2231. PubMed ID: 36943781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening relevant genes of tolerance to low phosphorus in maize using cDNA-amplified fragment length polymorphism.
    Jiang HY; Li Z; Zhao J; Ma Q; Cheng BJ; Zhu SW
    Genet Mol Res; 2015 May; 14(2):5731-41. PubMed ID: 26125772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize.
    Gu R; Chen F; Long L; Cai H; Liu Z; Yang J; Wang L; Li H; Li J; Liu W; Mi G; Zhang F; Yuan L
    J Genet Genomics; 2016 Nov; 43(11):663-672. PubMed ID: 27889500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.