These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28276659)

  • 1. A Nickel Dithiolate Water Reduction Catalyst Providing Ligand-Based Proton-Coupled Electron-Transfer Pathways.
    Koshiba K; Yamauchi K; Sakai K
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4247-4251. PubMed ID: 28276659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consecutive ligand-based PCET processes affording a doubly reduced nickel pyrazinedithiolate which transforms into a metal hydride required to evolve H
    Koshiba K; Yamauchi K; Sakai K
    Dalton Trans; 2019 Jan; 48(2):635-640. PubMed ID: 30539182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.
    Horvath S; Fernandez LE; Appel AM; Hammes-Schiffer S
    Inorg Chem; 2013 Apr; 52(7):3643-52. PubMed ID: 23477912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton reduction reaction catalyzed by homoleptic nickel bis-1,2-dithiolate complexes: Experimental and theoretical mechanistic investigations.
    Zarkadoulas A; Field MJ; Artero V; Mitsopoulou CA
    ChemCatChem; 2017 Jun; 9(12):2308-2317. PubMed ID: 28670348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A family of molecular nickel hydrogen evolution catalysts providing tunable overpotentials using ligand-centered proton-coupled electron transfer paths.
    Aimoto Y; Koshiba K; Yamauchi K; Sakai K
    Chem Commun (Camb); 2018 Nov; 54(91):12820-12823. PubMed ID: 30376014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions.
    Maher AG; Liu M; Nocera DG
    Inorg Chem; 2019 Jun; 58(12):7958-7968. PubMed ID: 31145599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect.
    Liu P; Rodriguez JA
    J Am Chem Soc; 2005 Oct; 127(42):14871-8. PubMed ID: 16231942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst.
    Tsay C; Yang JY
    J Am Chem Soc; 2016 Nov; 138(43):14174-14177. PubMed ID: 27416063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems.
    Mora SJ; Odella E; Moore GF; Gust D; Moore TA; Moore AL
    Acc Chem Res; 2018 Feb; 51(2):445-453. PubMed ID: 29309118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic H
    Norouziyanlakvan S; Rao GK; Ovens J; Gabidullin B; Richeson D
    Chemistry; 2021 Sep; 27(54):13518-13522. PubMed ID: 34415632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies.
    Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M
    Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adiabaticity of the proton-coupled electron-transfer step in the reduction of superoxide effected by nickel-containing superoxide dismutase metallopeptide-based mimics.
    Shearer J; Schmitt JC; Clewett HS
    J Phys Chem B; 2015 Apr; 119(17):5453-61. PubMed ID: 25850940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water oxidation by a nickel-glycine catalyst.
    Wang D; Ghirlanda G; Allen JP
    J Am Chem Soc; 2014 Jul; 136(29):10198-201. PubMed ID: 24992489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.
    Guo D; Qi J; Zhang W; Cao R
    ChemSusChem; 2017 Jan; 10(2):394-400. PubMed ID: 27870261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a PCET Mediator Enables a Ni-HER Electrocatalyst to Act as a Hydride Delivery Agent.
    Derosa J; Garrido-Barros P; Li M; Peters JC
    J Am Chem Soc; 2022 Nov; 144(43):20118-20125. PubMed ID: 36264765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Proton-Electron Coupling in π-Planar Metal Complex with Redox-Active Ligands.
    Huang P; Yoshida Y; Nakano Y; Yamochi H; Hayashi M; Kitagawa H
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202204521. PubMed ID: 35470543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase.
    Greene BL; Wu CH; Vansuch GE; Adams MW; Dyer RB
    Biochemistry; 2016 Mar; 55(12):1813-25. PubMed ID: 26956769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Applications of Proton-Coupled Electron Transfer.
    Gentry EC; Knowles RR
    Acc Chem Res; 2016 Aug; 49(8):1546-56. PubMed ID: 27472068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.
    Bediako DK; Surendranath Y; Nocera DG
    J Am Chem Soc; 2013 Mar; 135(9):3662-74. PubMed ID: 23360238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases.
    Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.