These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28276890)

  • 21. Effects of CuO nanoparticles in composted sewage sludge on rice-soil systems and their potential human health risks.
    Duc Phung L; Dhewi Afriani S; Aditya Padma Pertiwi P; Ito H; Kumar A; Watanabe T
    Chemosphere; 2023 Oct; 338():139555. PubMed ID: 37487974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles.
    Otero-González L; Field JA; Sierra-Alvarez R
    Water Res; 2014 Jul; 58():160-8. PubMed ID: 24762550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH(4)(+)-N reduction.
    Hou L; Xia J; Li K; Chen J; Wu X; Li X
    Water Sci Technol; 2013; 67(2):254-60. PubMed ID: 23168621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite.
    Momeni S; Ahmadi R; Nabipour I
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37162-37173. PubMed ID: 31749008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH(4) reduction.
    Hou L; Li K; Ding Y; Li Y; Chen J; Wu X; Li X
    Chemosphere; 2012 Apr; 87(3):248-52. PubMed ID: 22245077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris.
    Wang L; Huang X; Sun W; Too HZ; Laserna AKC; Li SFY
    Environ Pollut; 2020 Mar; 258():113647. PubMed ID: 31810715
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Henson TE; Navratilova J; Tennant AH; Bradham KD; Rogers KR; Hughes MF
    Nanotoxicology; 2019 Aug; 13(6):795-811. PubMed ID: 30938207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incidence of metal-based nanoparticles in the conventional wastewater treatment process.
    Cervantes-Avilés P; Keller AA
    Water Res; 2021 Feb; 189():116603. PubMed ID: 33189972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.
    Miao L; Wang C; Hou J; Wang P; Ao Y; Li Y; Geng N; Yao Y; Lv B; Yang Y; You G; Xu Y
    Bioresour Technol; 2016 Sep; 216():537-44. PubMed ID: 27281432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of green synthesized copper oxide nanoparticles for efficient removal of lead from wastewaters.
    Zarrabi A; Ghasemi-Fasaei R
    Int J Phytoremediation; 2022; 24(8):855-866. PubMed ID: 34613830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate of fluorescent core-shell silica nanoparticles during simulated secondary wastewater treatment.
    Otero-González L; Field JA; Calderon IAC; Aspinwall CA; Shadman F; Zeng C; Sierra-Alvarez R
    Water Res; 2015 Jun; 77():170-178. PubMed ID: 25875926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests.
    Scola S; Blasco J; Campana O
    Sci Total Environ; 2021 Mar; 760():143886. PubMed ID: 33340740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques.
    Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V
    Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions.
    Zhou D; Jin S; Li L; Wang Y; Weng N
    J Environ Sci (China); 2011; 23(11):1852-7. PubMed ID: 22432310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosorption of nanoparticles to heterotrophic wastewater biomass.
    Kiser MA; Ryu H; Jang H; Hristovski K; Westerhoff P
    Water Res; 2010 Jul; 44(14):4105-14. PubMed ID: 20547403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of metal nanoparticles on freshwater rotifers may persist across generations.
    Martins N; Pradhan A; Pascoal C; Cássio F
    Aquat Toxicol; 2020 Dec; 229():105652. PubMed ID: 33075614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles.
    Wu P; Wang Z; Adusei-Fosu K; Wang Y; Wang H; Li X
    J Environ Manage; 2024 Mar; 354():120338. PubMed ID: 38401494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the rheological behavior of activated sludge in response to CeO
    You G; Wang P; Hou J; Wang C; Qian J; Ao Y; Chen J; Miao L; Xu Y; Feng T; Tao L
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29725-29733. PubMed ID: 30145757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CuO nanoparticles in irrigation wastewater have no detrimental effect on rice growth but may pose human health risks.
    Phung LD; Kumar A; Watanabe T
    Sci Total Environ; 2022 Nov; 847():157602. PubMed ID: 35896133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.