BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2827728)

  • 21. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase.
    Sheu KF; Richard JP; Frey PA
    Biochemistry; 1979 Dec; 18(25):5548-56. PubMed ID: 229894
    [No Abstract]   [Full Text] [Related]  

  • 22. Mechanistic investigations of Escherichia coli cytidine-5'-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments.
    von der Saal W; Anderson PM; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):14993-7. PubMed ID: 2933396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of skeletal-muscle UDP-glucose pyrophosphorylase by reaction with carboxylate-directed reagents.
    Signorini M; Ferrari C; Mariotti E; Dallocchio F; Bergamini CM
    Biochem J; 1989 Dec; 264(3):799-804. PubMed ID: 2559717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of uridine 5'-diphosphate (UDP)-glucose by high-performance liquid chromatography and its application to a nonradioactive assay for nucleoside diphosphate kinase using UDP-glucose pyrophosphorylase as a coupling enzyme.
    Dorion S; Rivoal J
    Anal Biochem; 2003 Dec; 323(2):188-96. PubMed ID: 14656524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of UDP-glucose pyrophosphorylase by axenically grown amoebae of Dictyostelium discoideum.
    Hames BD; Hodson BA
    Biochem J; 1979 Jan; 177(1):21-8. PubMed ID: 426770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase.
    Szumilo T; Zeng Y; Pastuszak I; Drake R; Szumilo H; Elbein AD
    J Biol Chem; 1996 May; 271(22):13147-54. PubMed ID: 8662687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CugP is a novel ubiquitous non-GalU-type bacterial UDP-glucose pyrophosphorylase found in cyanobacteria.
    Maeda K; Narikawa R; Ikeuchi M
    J Bacteriol; 2014 Jul; 196(13):2348-54. PubMed ID: 24727225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate.
    Ebrecht AC; Asención Diez MD; Piattoni CV; Guerrero SA; Iglesias AA
    Biochim Biophys Acta; 2015 Jan; 1850(1):88-96. PubMed ID: 25316289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An approach to the in vitro study of the UTP/UDPglucose/UDP moiety-conserved cycle.
    Fassy F; Hervagault JF
    Biochim Biophys Acta; 1994 Aug; 1200(3):297-306. PubMed ID: 8068716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The determination of enzyme-substrate dissociation rates by dynamic isotope exchange enhancement experiments.
    Kim SC; Raushel FM
    J Biol Chem; 1986 Jun; 261(18):8163-6. PubMed ID: 3522565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotope exchange as a probe of the kinetic mechanism of pyrophosphate-dependent phosphofructokinase.
    Cho YK; Matsunaga TO; Kenyon GL; Bertagnolli BL; Cook PF
    Biochemistry; 1988 May; 27(9):3320-5. PubMed ID: 2839232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unidirectional steady state rates of central metabolism enzymes measured simultaneously in a living plant tissue.
    Roscher A; Emsley L; Raymond P; Roby C
    J Biol Chem; 1998 Sep; 273(39):25053-61. PubMed ID: 9737962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved assay for UDPglucose pyrophosphorylase and other enzymes that have nucleotide products.
    Duggleby RG; Peng HL; Chang HY
    Experientia; 1996 Jun; 52(6):568-72. PubMed ID: 8698091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of glycogen synthetase as determined by deuterium isotope effects and positional isotope exchange experiments.
    Kim SC; Singh AN; Raushel FM
    J Biol Chem; 1988 Jul; 263(21):10151-4. PubMed ID: 3134344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for coupling between transport of UDP-glucose and its synthesis by membrane-bound pyrophosphorylase in Golgi apparatus of cat liver.
    Persat F; Azzar G; Martel MB; Got R
    Biochim Biophys Acta; 1984 Jan; 769(2):377-80. PubMed ID: 6320876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Examination of the mechanism of sucrose synthetase by positional isotope exchange.
    Singh AN; Hester LS; Raushel FM
    J Biol Chem; 1987 Feb; 262(6):2554-7. PubMed ID: 2950088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic synthesis and purification of [(3)H]uridine diphosphate galacturonic acid for use in studying Golgi-localized transporters.
    Orellana A; Mohnen D
    Anal Biochem; 1999 Aug; 272(2):224-31. PubMed ID: 10415092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the catalytic mechanism of skeletal muscle UDP-glucose pyrophosphorylase: identification of a hyperreactive cysteine at the enzyme active site.
    Bergamini CM; Signorini M
    Int J Biochem; 1991; 23(1):123-7. PubMed ID: 2022293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase activities.
    Silva E; Marques AR; Fialho AM; Granja AT; Sá-Correia I
    Appl Environ Microbiol; 2005 Aug; 71(8):4703-12. PubMed ID: 16085866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.