These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28277614)

  • 1. Enhancing structural characterisation of glucuronidated O-linked glycans using negative mode ion trap higher energy collision-induced dissociation mass spectrometry.
    Ashwood C; Abrahams JL; Nevalainen H; Packer NH
    Rapid Commun Mass Spectrom; 2017 May; 31(10):851-858. PubMed ID: 28277614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of O-glycopeptides employing negative- and positive-ion multi-stage mass spectra obtained by collision-induced and electron-capture dissociations in linear ion trap time-of-flight mass spectrometry.
    Deguchi K; Ito H; Baba T; Hirabayashi A; Nakagawa H; Fumoto M; Hinou H; Nishimura S
    Rapid Commun Mass Spectrom; 2007; 21(5):691-8. PubMed ID: 17279605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches.
    Demelbauer UM; Zehl M; Plematl A; Allmaier G; Rizzi A
    Rapid Commun Mass Spectrom; 2004; 18(14):1575-82. PubMed ID: 15282782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching.
    Ito H; Takegawa Y; Deguchi K; Nagai S; Nakagawa H; Shinohara Y; Nishimura S
    Rapid Commun Mass Spectrom; 2006; 20(23):3557-65. PubMed ID: 17091533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans.
    Deguchi K; Ito H; Takegawa Y; Shinji N; Nakagawa H; Nishimura S
    Rapid Commun Mass Spectrom; 2006; 20(5):741-6. PubMed ID: 16456804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem mass spectrometry of isomeric aniline-labeled N-glycans separated on porous graphitic carbon: Revealing the attachment position of terminal sialic acids and structures of neutral glycans.
    Michael C; Rizzi AM
    Rapid Commun Mass Spectrom; 2015 Jul; 29(13):1268-78. PubMed ID: 26395610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry.
    Wang D; Hincapie M; Rejtar T; Karger BL
    Anal Chem; 2011 Mar; 83(6):2029-37. PubMed ID: 21338062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Art of Destruction: Optimizing Collision Energies in Quadrupole-Time of Flight (Q-TOF) Instruments for Glycopeptide-Based Glycoproteomics.
    Hinneburg H; Stavenhagen K; Schweiger-Hufnagel U; Pengelley S; Jabs W; Seeberger PH; Silva DV; Wuhrer M; Kolarich D
    J Am Soc Mass Spectrom; 2016 Mar; 27(3):507-19. PubMed ID: 26729457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins.
    Singh C; Zampronio CG; Creese AJ; Cooper HJ
    J Proteome Res; 2012 Sep; 11(9):4517-25. PubMed ID: 22800195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping.
    Bongers J; Devincentis J; Fu J; Huang P; Kirkley DH; Leister K; Liu P; Ludwig R; Rumney K; Tao L; Wu W; Russell RJ
    J Chromatogr A; 2011 Nov; 1218(45):8140-9. PubMed ID: 21978954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides.
    Halim A; Westerlind U; Pett C; Schorlemer M; Rüetschi U; Brinkmalm G; Sihlbom C; Lengqvist J; Larson G; Nilsson J
    J Proteome Res; 2014 Dec; 13(12):6024-32. PubMed ID: 25358049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans.
    Garcia-Campos A; Ravidà A; Nguyen DL; Cwiklinski K; Dalton JP; Hokke CH; O'Neill S; Mulcahy G
    PLoS Negl Trop Dis; 2016 May; 10(5):e0004688. PubMed ID: 27139907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced detection and identification of glycopeptides in negative ion mode mass spectrometry.
    Nwosu CC; Strum JS; An HJ; Lebrilla CB
    Anal Chem; 2010 Dec; 82(23):9654-62. PubMed ID: 21049935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis.
    Couto N; Davlyatova L; Evans CA; Wright PC
    Rapid Commun Mass Spectrom; 2018 Jan; 32(2):75-85. PubMed ID: 29055059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS.
    Thaysen-Andersen M; Wilkinson BL; Payne RJ; Packer NH
    Electrophoresis; 2011 Dec; 32(24):3536-45. PubMed ID: 22180206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem mass spectra of glycan substructures enable the multistage mass spectrometric identification of determinants on oligosaccharides.
    Everest-Dass AV; Kolarich D; Campbell MP; Packer NH
    Rapid Commun Mass Spectrom; 2013 May; 27(9):931-9. PubMed ID: 23592194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry.
    Cao Q; Zhao X; Zhao Q; Lv X; Ma C; Li X; Zhao Y; Peng B; Ying W; Qian X
    Anal Chem; 2014 Jul; 86(14):6804-11. PubMed ID: 24914453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new method using HILIC-tandem mass spectrometry for the characterization of O-sialoglycopeptides from proteolytically digested caseinomacropeptide.
    Hernandez-Hernandez O; Lebron-Aguilar R; Quintanilla-Lopez JE; Sanz ML; Moreno FJ
    Proteomics; 2010 Oct; 10(20):3699-711. PubMed ID: 20859957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing protein glycosylation sites through higher-energy C-trap dissociation.
    Segu ZM; Mechref Y
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.