These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 28277621)

  • 1. Starch as a determinant of plant fitness under abiotic stress.
    Thalmann M; Santelia D
    New Phytol; 2017 May; 214(3):943-951. PubMed ID: 28277621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and -independent pathways in Arabidopsis.
    Liu K; Zou W; Gao X; Wang X; Yu Q; Ge L
    Biochem Biophys Res Commun; 2019 Aug; 515(4):699-705. PubMed ID: 31186142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response.
    Dong S; Beckles DM
    J Plant Physiol; 2019; 234-235():80-93. PubMed ID: 30685652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress.
    Zanella M; Borghi GL; Pirone C; Thalmann M; Pazmino D; Costa A; Santelia D; Trost P; Sparla F
    J Exp Bot; 2016 Mar; 67(6):1819-26. PubMed ID: 26792489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions.
    Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N
    J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.
    Ramachandra Reddy A; Chaitanya KV; Vivekanandan M
    J Plant Physiol; 2004 Nov; 161(11):1189-202. PubMed ID: 15602811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of DREBs in regulation of abiotic stress responses in plants.
    Lata C; Prasad M
    J Exp Bot; 2011 Oct; 62(14):4731-48. PubMed ID: 21737415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application.
    Freitas EO; Melo BP; Lourenço-Tessutti IT; Arraes FBM; Amorim RM; Lisei-de-Sá ME; Costa JA; Leite AGB; Faheem M; Ferreira MA; Morgante CV; Fontes EPB; Grossi-de-Sa MF
    BMC Biotechnol; 2019 Nov; 19(1):79. PubMed ID: 31747926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk.
    Berens ML; Wolinska KW; Spaepen S; Ziegler J; Nobori T; Nair A; Krüler V; Winkelmüller TM; Wang Y; Mine A; Becker D; Garrido-Oter R; Schulze-Lefert P; Tsuda K
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2364-2373. PubMed ID: 30674663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions.
    Kurepin LV; Ivanov AG; Zaman M; Pharis RP; Allakhverdiev SI; Hurry V; Hüner NP
    Photosynth Res; 2015 Dec; 126(2-3):221-35. PubMed ID: 25823797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.
    Mutava RN; Prince SJK; Syed NH; Song L; Valliyodan B; Chen W; Nguyen HT
    Plant Physiol Biochem; 2015 Jan; 86():109-120. PubMed ID: 25438143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression.
    Kim JH; Lim SD; Jang CS
    Plant Mol Biol; 2020 Jun; 103(3):235-252. PubMed ID: 32206999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of proline function in higher plants under extreme temperatures.
    Raza A; Charagh S; Abbas S; Hassan MU; Saeed F; Haider S; Sharif R; Anand A; Corpas FJ; Jin W; Varshney RK
    Plant Biol (Stuttg); 2023 Apr; 25(3):379-395. PubMed ID: 36748909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance.
    Pommerrenig B; Ludewig F; Cvetkovic J; Trentmann O; Klemens PAW; Neuhaus HE
    Plant Cell Physiol; 2018 Jul; 59(7):1290-1299. PubMed ID: 29444312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses.
    Jiang SC; Mei C; Liang S; Yu YT; Lu K; Wu Z; Wang XF; Zhang DP
    Plant Mol Biol; 2015 Jul; 88(4-5):369-85. PubMed ID: 26093896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant adaptations to the combination of drought and high temperatures.
    Zandalinas SI; Mittler R; Balfagón D; Arbona V; Gómez-Cadenas A
    Physiol Plant; 2018 Jan; 162(1):2-12. PubMed ID: 28042678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses.
    Khan AL; Hamayun M; Ahmad N; Waqas M; Kang SM; Kim YH; Lee IJ
    Physiol Plant; 2011 Dec; 143(4):329-43. PubMed ID: 21883250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.