These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28277674)

  • 1. Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB.
    Wei WJ; Siegbahn PE; Liao RZ
    Inorg Chem; 2017 Mar; 56(6):3589-3599. PubMed ID: 28277674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme.
    Faponle AS; Seebeck FP; de Visser SP
    J Am Chem Soc; 2017 Jul; 139(27):9259-9270. PubMed ID: 28602090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway.
    Goncharenko KV; Vit A; Blankenfeldt W; Seebeck FP
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2821-4. PubMed ID: 25597398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Alternative Active Site Architecture for O
    Stampfli AR; Goncharenko KV; Meury M; Dubey BN; Schirmer T; Seebeck FP
    J Am Chem Soc; 2019 Apr; 141(13):5275-5285. PubMed ID: 30883103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of the mechanism of oxoiron(IV) formation from H2O2 and a nonheme iron(II) complex: O-O cleavage involving proton-coupled electron transfer.
    Hirao H; Li F; Que L; Morokuma K
    Inorg Chem; 2011 Jul; 50(14):6637-48. PubMed ID: 21678930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis.
    Liu M; Yang Y; Huang JW; Dai L; Zheng Y; Cheng S; He H; Chen CC; Guo RT
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128428. PubMed ID: 38013086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
    Liao C; Seebeck FP
    Chembiochem; 2017 Nov; 18(21):2115-2118. PubMed ID: 28862368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase.
    Sun S; Li ZS; Chen SL
    Dalton Trans; 2014 Jan; 43(3):973-81. PubMed ID: 24162174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic and biochemical characterizations of C-S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway.
    Hu W; Song H; Sae Her A; Bak DW; Naowarojna N; Elliott SJ; Qin L; Chen X; Liu P
    Org Lett; 2014 Oct; 16(20):5382-5. PubMed ID: 25275953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why is the oxidation state of iron crucial for the activity of heme-dependent aldoxime dehydratase? A QM/MM study.
    Liao RZ; Thiel W
    J Phys Chem B; 2012 Aug; 116(31):9396-408. PubMed ID: 22799447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory calculations on the active site of biotin synthase: mechanism of S transfer from the Fe(2)S(2) cluster and the role of 1st and 2nd sphere residues.
    Rana A; Dey S; Agrawal A; Dey A
    J Biol Inorg Chem; 2015 Oct; 20(7):1147-62. PubMed ID: 26369537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex.
    Borowski T; Bassan A; Siegbahn PE
    Inorg Chem; 2004 May; 43(10):3277-91. PubMed ID: 15132638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal Structure of the Ergothioneine Sulfoxide Synthase from
    Naowarojna N; Irani S; Hu W; Cheng R; Zhang L; Li X; Chen J; Zhang YJ; Liu P
    ACS Catal; 2019 Aug; 9(8):6955-6961. PubMed ID: 32257583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-bridging mechanism for O-O bond cleavage in cytochrome C oxidase.
    Blomberg MR; Siegbahn PE; Wikström M
    Inorg Chem; 2003 Aug; 42(17):5231-43. PubMed ID: 12924894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases.
    Goncharenko KV; Flückiger S; Liao C; Lim D; Stampfli AR; Seebeck FP
    Chemistry; 2020 Jan; 26(6):1328-1334. PubMed ID: 31545545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.