These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 28277674)
21. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases. Olsson E; Martinez A; Teigen K; Jensen VR Chemistry; 2011 Mar; 17(13):3746-58. PubMed ID: 21351297 [TBL] [Abstract][Full Text] [Related]
22. How is a co-methyl intermediate formed in the reaction of cobalamin-dependent methionine synthase? Theoretical evidence for a two-step methyl cation transfer mechanism. Chen SL; Blomberg MR; Siegbahn PE J Phys Chem B; 2011 Apr; 115(14):4066-77. PubMed ID: 21417249 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic insights for formation of an organometallic Co-C bond in the methyl transfer reaction catalyzed by methionine synthase. Kumar N; Kozlowski PM J Phys Chem B; 2013 Dec; 117(50):16044-57. PubMed ID: 24164324 [TBL] [Abstract][Full Text] [Related]
24. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses. Song H; Leninger M; Lee N; Liu P Org Lett; 2013 Sep; 15(18):4854-7. PubMed ID: 24016264 [TBL] [Abstract][Full Text] [Related]
25. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes. de Visser SP; Oh K; Han AR; Nam W Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641 [TBL] [Abstract][Full Text] [Related]
26. Biochemical and Structural Characterization of OvoA Wang X; Hu S; Wang J; Zhang T; Ye K; Wen A; Zhu G; Vegas A; Zhang L; Yan W; Liu X; Liu P ACS Catal; 2023 Dec; 13(23):15417-15426. PubMed ID: 38058600 [TBL] [Abstract][Full Text] [Related]
27. QM/MM study on the catalytic mechanism of heme-containing aliphatic aldoxime dehydratase. Pan XL; Cui FC; Liu W; Liu JY J Phys Chem B; 2012 May; 116(19):5689-93. PubMed ID: 22554192 [TBL] [Abstract][Full Text] [Related]
28. Theoretical study of oxidation of cyclohexane diol to adipic anhydride by [Ru(IV)(O)(tpa)(H2O)]2+ complex (tpa ═ tris(2-pyridylmethyl)amine). Shiota Y; Herrera JM; Juhász G; Abe T; Ohzu S; Ishizuka T; Kojima T; Yoshizawa K Inorg Chem; 2011 Jul; 50(13):6200-9. PubMed ID: 21634386 [TBL] [Abstract][Full Text] [Related]
29. Mechanism for O-O bond formation in a biomimetic tetranuclear manganese cluster--A density functional theory study. Liao RZ; Siegbahn PE J Photochem Photobiol B; 2015 Nov; 152(Pt A):162-72. PubMed ID: 25534173 [TBL] [Abstract][Full Text] [Related]
30. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study. Qi Y; Lu J; Lai W J Phys Chem B; 2016 May; 120(20):4579-90. PubMed ID: 27119315 [TBL] [Abstract][Full Text] [Related]
31. Ferric superoxide and ferric hydroxide are used in the catalytic mechanism of hydroxyethylphosphonate dioxygenase: a density functional theory investigation. Hirao H; Morokuma K J Am Chem Soc; 2010 Dec; 132(50):17901-9. PubMed ID: 21121666 [TBL] [Abstract][Full Text] [Related]
32. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides. Bach RD J Phys Chem A; 2011 Oct; 115(40):11087-100. PubMed ID: 21888352 [TBL] [Abstract][Full Text] [Related]
33. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex. Esteves LF; Rey NA; Dos Santos HF; Costa LA Inorg Chem; 2016 Mar; 55(6):2806-18. PubMed ID: 26934384 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of acid decomposition of dithiocarbamates. 4. Theoretical calculations on the water-catalyzed reaction. García JI; Humeres E J Org Chem; 2002 May; 67(9):2755-61. PubMed ID: 11975525 [TBL] [Abstract][Full Text] [Related]
35. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769 [TBL] [Abstract][Full Text] [Related]
36. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631 [TBL] [Abstract][Full Text] [Related]
37. Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin. Kumar D; Hirao H; Shaik S; Kozlowski PM J Am Chem Soc; 2006 Dec; 128(50):16148-58. PubMed ID: 17165768 [TBL] [Abstract][Full Text] [Related]
38. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. Deeth RJ; Bugg TD J Biol Inorg Chem; 2003 Apr; 8(4):409-18. PubMed ID: 12761662 [TBL] [Abstract][Full Text] [Related]
39. Determinants of regioselectivity and chemoselectivity in fosfomycin resistance protein FosA from QM/MM calculations. Liao RZ; Thiel W J Phys Chem B; 2013 Feb; 117(5):1326-36. PubMed ID: 23320732 [TBL] [Abstract][Full Text] [Related]
40. Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Goncharenko KV; Seebeck FP Chem Commun (Camb); 2016 Jan; 52(9):1945-8. PubMed ID: 26679371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]