These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 2827773)

  • 1. The thermodynamic essence of the reversible inactivation of Na+/K+-transporting ATPase by various digitalis derivatives is relaxation of enzyme conformational energy.
    Beer J; Kunze R; Herrmann I; Portius HJ; Mirsalichova NM; Abubakirov NK; Repke KR
    Biochim Biophys Acta; 1988 Jan; 937(2):335-46. PubMed ID: 2827773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation between isoforms of Na+/K+-transporting atpase from human and guinea-pig muscle through use of digitalis derivatives as analytical probes.
    Schön R; Weiland J; Megges R; Repke KR
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Mar; 351(3):282-92. PubMed ID: 7609782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digitalis structure-activity relationship analyses. Conclusions from indirect binding studies with cardiac (Na+ + K+)-ATPase.
    Brown L; Erdmann E; Thomas R
    Biochem Pharmacol; 1983 Sep; 32(18):2767-74. PubMed ID: 6313008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of cardiac glycosides and Na,K-ATPase is regulated by effector-controlled equilibrium between two limit enzyme conformers.
    Repke KR; Herrmann I; Portius HJ
    Biochem Pharmacol; 1984 Jul; 33(13):2089-99. PubMed ID: 6331458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ATP and monovalent cations on Mg2+ inhibition of (Na,K)-ATPase.
    Pedemonte CH; Beaugé L
    Arch Biochem Biophys; 1986 Feb; 244(2):596-606. PubMed ID: 3004346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool.
    Grosse R; Eckert K; Malur J; Repke KR
    Acta Biol Med Ger; 1978; 37(1):83-96. PubMed ID: 212908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemia-induced enhancement of digitalis sensitivity in isolated guinea-pig heart.
    Kim DH; Akera T; Kennedy RH
    J Pharmacol Exp Ther; 1983 Aug; 226(2):335-42. PubMed ID: 6308206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationship at the glycosidic moiety of digitalis compounds as found in tests with NA/K-ATPase isoforms from cardiac muscle of guinea-pig and man.
    Weiland J; Schön R; Megges R; Repke KR; Watson TR
    J Enzyme Inhib; 1994; 8(3):197-205. PubMed ID: 7539488
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of progesterone derivatives with the digitalis target enzyme: impact of glycosidation on inhibitory potency.
    Weiland J; Schönfeld W; Menke KH; Repke KR
    Pharmacol Res; 1991 Jan; 23(1):27-32. PubMed ID: 1710800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do MgATP analogues differentially modify high-affinity and low-affinity ATP binding sites of Na+/K(+)-ATPase?
    Serpersu EH; Bunk S; Schoner W
    Eur J Biochem; 1990 Jul; 191(2):397-404. PubMed ID: 2166662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of digitalis on cell biochemistry: sodium pump inhibition.
    Katz AM
    J Am Coll Cardiol; 1985 May; 5(5 Suppl A):16A-21A. PubMed ID: 2580875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport.
    Pauls H; Serpersu EH; Kirch U; Schoner W
    Eur J Biochem; 1986 Jun; 157(3):585-95. PubMed ID: 2424757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of differences of inhibitory potency of cardiac glycosides in Na+/K+-transporting ATPase from human cardiac muscle, human brain cortex and guinea-pig cardiac muscle.
    Schönfeld W; Schönfeld R; Menke KH; Weiland J; Repke KR
    Biochem Pharmacol; 1986 Oct; 35(19):3221-31. PubMed ID: 3021166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates.
    Pauls H; Bredenbröcker B; Schoner W
    Eur J Biochem; 1980 Aug; 109(2):523-33. PubMed ID: 6250846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acceleration of Na+,K+-ATPase activity by ATP and ATP analogues.
    Suzuki K; Taniguchi K; Iida S
    J Biol Chem; 1987 Aug; 262(24):11752-7. PubMed ID: 3040715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-dependent reactivity of (Na+ + K+)-ATPase with showdomycin.
    Hara S; Hara Y; Nakao T; Nakao M
    Biochim Biophys Acta; 1981 Jun; 644(1):53-61. PubMed ID: 6266464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of digitalis derivatives to beef, cat and human cardiac (Na+ + K+)-ATPase. Affinity and kinetic constants.
    Brown L; Erdmann E
    Arch Int Pharmacodyn Ther; 1984 Oct; 271(2):229-40. PubMed ID: 6095779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental increase of digitalis receptors in guinea pig heart.
    Khatter JC; Hoeschen RJ
    Cardiovasc Res; 1982 Feb; 16(2):80-5. PubMed ID: 6280863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of conformational changes associated with potassium binding to and release from Na+/K(+)-ATPase.
    Pratap PR; Palit A; Grassi-Nemeth E; Robinson JD
    Biochim Biophys Acta; 1996 Dec; 1285(2):203-11. PubMed ID: 8972704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.