BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28278008)

  • 21. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Sports Med; 2013 Jan; 43(1):23-38. PubMed ID: 23315754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia.
    Algood SD; Cooper RA; Fitzgerald SG; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2004 Nov; 85(11):1865-71. PubMed ID: 15520983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspects of manual wheelchair configuration affecting mobility: a review.
    Medola FO; Elui VM; Santana Cda S; Fortulan CA
    J Phys Ther Sci; 2014 Feb; 26(2):313-8. PubMed ID: 24648656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a mobility assistance dog reduces upper limb effort during manual wheelchair ramp ascent in an individual with spinal cord injury.
    Gagnon D; Blanchet M; Martin-Lemoyne V; Vincent C; Routhier F; Corriveau H
    J Spinal Cord Med; 2013 Nov; 36(6):700-6. PubMed ID: 24094288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis.
    Gutierrez DD; Mulroy SJ; Newsam CJ; Gronley JK; Perry J
    J Spinal Cord Med; 2005; 28(3):222-9. PubMed ID: 16048140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
    Slowik JS; McNitt-Gray JL; Requejo PS; Mulroy SJ; Neptune RR
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():34-41. PubMed ID: 26945719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. User assessment of manual wheelchair ride comfort and ergonomics.
    DiGiovine MM; Cooper RA; Boninger ML; Lawrence BM; VanSickle DP; Rentschler AJ
    Arch Phys Med Rehabil; 2000 Apr; 81(4):490-4. PubMed ID: 10768541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanics of wheelchair propulsion by able-bodied subjects.
    Ruggles DL; Cahalan T; An KN
    Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of shoulder joint kinematics and muscle activity during geared and standard manual wheelchair mobility.
    Jahanian O; Schnorenberg AJ; Slavens BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6162-6165. PubMed ID: 28269659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C; Vaslin P; Lavaste F; de Saint Remy N; Cid M
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On "impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults".
    Sprigle S
    Arch Phys Med Rehabil; 2009 Jul; 90(7):1073-5. PubMed ID: 19577018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.