BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28278085)

  • 1. Catalyst-coated cement beads for the degradation and mineralization of fungicide carbendazim using laboratory and pilot-scale reactor: catalyst stability analysis.
    Singh A; Verma A; Bansal P; Aggarwal K; Kaur T; Toor AP; Sangal VK
    Environ Technol; 2018 Feb; 39(4):424-432. PubMed ID: 28278085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO(2) process: optimization, kinetics and toxicity studies.
    Saien J; Khezrianjoo S
    J Hazard Mater; 2008 Sep; 157(2-3):269-76. PubMed ID: 18243543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry.
    Pourreza N; Rastegarzadeh S; Larki A
    Talanta; 2015 Mar; 134():24-29. PubMed ID: 25618636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: durability studies.
    Verma A; Prakash NT; Toor AP
    Chemosphere; 2014 Aug; 109():7-13. PubMed ID: 24873700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption, transformation, and bioavailability of the fungicides carbendazim and iprodione in soil, alone and in combination.
    Leistra M; Matser AM
    J Environ Sci Health B; 2004 Jan; 39(1):1-17. PubMed ID: 15022737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and Metabolic Fate of the Fungicide Carbendazim in the Typical Freshwater Diatom Navicula Species.
    Ding T; Li W; Li J
    J Agric Food Chem; 2019 Jun; 67(24):6683-6690. PubMed ID: 31140797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The breakdown of the fungicide carbendazim in an aqueous environment].
    Bogacka T
    Rocz Panstw Zakl Hig; 1995; 46(2):183-92. PubMed ID: 8533037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence enhancement of carbendazim fungicide in cucurbit[6]uril.
    Saleh N; Al-Rawashdeh NA
    J Fluoresc; 2006 Jul; 16(4):487-93. PubMed ID: 16807778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of controlled release nanoformulations of carbendazim employing amphiphilic polymers and their bioefficacy evaluation against Rhizoctonia solani.
    Koli P; Singh BB; Shakil NA; Kumar J; Kamil D
    J Environ Sci Health B; 2015; 50(9):674-81. PubMed ID: 26079342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on the adsorption of carbendazim in Polish mineral soils.
    Paszko T
    Sci Total Environ; 2012 Oct; 435-436():222-9. PubMed ID: 22854093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylmercury degradation by heterogeneous photocatalysis assisted by UV-A light.
    Miranda C; Yáñez J; Contreras D; Zaror C; Mansilla HD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1642-8. PubMed ID: 23947701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles.
    Sandhya ; Kumar S; Kumar D; Dilbaghi N
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):926-937. PubMed ID: 27761863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Edge Sword Behavior of Carbendazim: A Potent Fungicide With Anticancer Therapeutic Properties.
    Goyal K; Sharma A; Arya R; Sharma R; Gupta GK; Sharma AK
    Anticancer Agents Med Chem; 2018; 18(1):38-45. PubMed ID: 28003000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil.
    Yu Y; Chu X; Pang G; Xiang Y; Fang H
    J Environ Sci (China); 2009; 21(2):179-85. PubMed ID: 19402419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of conazole fungicides in water by electrochemical oxidation.
    Urzúa J; González-Vargas C; Sepúlveda F; Ureta-Zañartu MS; Salazar R
    Chemosphere; 2013 Nov; 93(11):2774-81. PubMed ID: 24140400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of carbendazim in aqueous solution by different settings of photochemical and electrochemical oxidation processes.
    Machado RM; da Silva SW; Bernardes AM; Ferreira JZ
    J Environ Manage; 2022 May; 310():114805. PubMed ID: 35240565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods.
    Strickland AD; Batt CA
    Anal Chem; 2009 Apr; 81(8):2895-903. PubMed ID: 19301846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC-MS/MS.
    Filipe OM; Santos SA; Domingues MR; Vidal MM; Silvestre AJ; Neto CP; Santos EB
    Chemosphere; 2013 May; 91(7):993-1001. PubMed ID: 23466090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetamiprid, carbendazim, diuron and thiamethoxam sorption in two Brazilian tropical soils.
    Carbo L; Martins EL; Dores EF; Spadotto CA; Weber OL; De-Lamonica-Freire EM
    J Environ Sci Health B; 2007; 42(5):499-507. PubMed ID: 17562457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits.
    Utture SC; Banerjee K; Dasgupta S; Patil SH; Jadhav MR; Wagh SS; Kolekar SS; Anuse MA; Adsule PG
    J Agric Food Chem; 2011 Jul; 59(14):7866-73. PubMed ID: 21671616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.