These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28278273)

  • 21. Representation of virtual arm movements in precuneus.
    Dohle C; Stephan KM; Valvoda JT; Hosseiny O; Tellmann L; Kuhlen T; Seitz RJ; Freund HJ
    Exp Brain Res; 2011 Feb; 208(4):543-55. PubMed ID: 21188363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemispheric specialization in the co-ordination of arm and trunk movements during pointing in patients with unilateral brain damage.
    Esparza DY; Archambault PS; Winstein CJ; Levin MF
    Exp Brain Res; 2003 Feb; 148(4):488-97. PubMed ID: 12582832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlimb coupling strength scales with movement amplitude.
    Peper CL; de Boer BJ; de Poel HJ; Beek PJ
    Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Movement interference during action observation as emergent coordination.
    Richardson MJ; Campbell WL; Schmidt RC
    Neurosci Lett; 2009 Jan; 449(2):117-22. PubMed ID: 18996439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ipsilesional arm motor sequence performance after right and left hemisphere damage.
    de Paiva Silva FP; Freitas SM; Silva PV; Banjai RM; Alouche SR
    J Mot Behav; 2014; 46(6):407-14. PubMed ID: 25204326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension.
    Laimgruber K; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2005; 43(5):682-92. PubMed ID: 15721181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are the Predictions of the Dynamic Dominance Model of Laterality Applicable to Children?
    Marcori AJ; Teixeira LA; Dascal JB; Okazaki VHA
    Dev Neuropsychol; 2020 Dec; 45(7-8):496-505. PubMed ID: 33203247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Balanced Reach: A Temporal and Spectral Analysis Across Increasing Performance Demands.
    Barton JE; Graci V; Hafer-Macko C; Sorkin JD; F Macko R
    J Biomech Eng; 2016 Dec; 138(12):1210091-12100913. PubMed ID: 27551977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateralized regular spatial patterns in oscillating drawing arm movements of right-handed young women.
    Gutnik BJ; Corballis MC; Nicholson J
    Percept Mot Skills; 2004 Feb; 98(1):249-71. PubMed ID: 15058887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.
    Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF
    Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame.
    Swinnen SP; Dounskaia N; Duysens J
    J Cogn Neurosci; 2002 Apr; 14(3):463-71. PubMed ID: 11970805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new conceptual model of asymmetry in motor performance for bidimensional fast-oscillating movements in selected variants of performance.
    Gutnik BJ; Nicholson J; Nash D
    Percept Mot Skills; 2000 Aug; 91(1):155-87. PubMed ID: 11011887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient control of arm movements in advanced age.
    Lee G; Fradet L; Ketcham CJ; Dounskaia N
    Exp Brain Res; 2007 Feb; 177(1):78-94. PubMed ID: 16944112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimality of Upper-Arm Reaching Trajectories Based on the Expected Value of the Metabolic Energy Cost.
    Taniai Y; Nishii J
    Neural Comput; 2015 Aug; 27(8):1721-37. PubMed ID: 26079750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of arm-gun movement during air pistol aiming phase.
    Pellegrini B; Schena F
    J Sports Med Phys Fitness; 2005 Dec; 45(4):467-75. PubMed ID: 16446677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruptions in joint control during drawing arm movements in Parkinson's disease.
    Dounskaia N; Ketcham CJ; Leis BC; Stelmach GE
    Exp Brain Res; 2005 Jul; 164(3):311-22. PubMed ID: 15891873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Movement pattern variability in stone knapping: implications for the development of percussive traditions.
    Rein R; Nonaka T; Bril B
    PLoS One; 2014; 9(11):e113567. PubMed ID: 25426630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.