BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28278455)

  • 1. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning visuomotor transformations for gaze-control and grasping.
    Hoffmann H; Schenck W; Möller R
    Biol Cybern; 2005 Aug; 93(2):119-30. PubMed ID: 16028074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When gaze turns into grasp.
    Pierno AC; Becchio C; Wall MB; Smith AT; Turella L; Castiello U
    J Cogn Neurosci; 2006 Dec; 18(12):2130-7. PubMed ID: 17129195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.
    Yoo BS; Kim JH
    IEEE Trans Cybern; 2015 Sep; 45(9):1769-83. PubMed ID: 25312975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
    Abu-Alqumsan M; Ebert F; Peer A
    J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Wink to grasp" - comparing eye, voice & EMG gesture control of grasp with soft-robotic gloves.
    Noronha B; Dziemian S; Zito GA; Konnaris C; Faisal AA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1043-1048. PubMed ID: 28813959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery.
    Mylonas GP; Kwok KW; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):676-83. PubMed ID: 18982663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic MIS.
    Mylonas GP; Kwok KW; James DR; Leff D; Orihuela-Espina F; Darzi A; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):612-31. PubMed ID: 20889367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory gaze strategies when grasping moving objects.
    Bulloch MC; Prime SL; Marotta JJ
    Exp Brain Res; 2015 Dec; 233(12):3413-23. PubMed ID: 26289482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High level functions for the intuitive use of an assistive robot.
    Lebec O; Ben Ghezala MW; Leynart V; Laffont I; Fattal C; Devilliers L; Chastagnol C; Martin JC; Mezouar Y; Korrapatti H; Dupourqué V; Leroux C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650374. PubMed ID: 24187193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infants understand the referential nature of human gaze but not robot gaze.
    Okumura Y; Kanakogi Y; Kanda T; Ishiguro H; Itakura S
    J Exp Child Psychol; 2013 Sep; 116(1):86-95. PubMed ID: 23660178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time multiple human perception with color-depth cameras on a mobile robot.
    Zhang H; Reardon C; Parker LE
    IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Object grasping using the minimum variance model.
    Simmons G; Demiris Y
    Biol Cybern; 2006 May; 94(5):393-407. PubMed ID: 16479397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human-Robot Collaboration.
    Haji Fathaliyan A; Wang X; Santos VJ
    Front Robot AI; 2018; 5():25. PubMed ID: 33500912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An egocentric vision based assistive co-robot.
    Zhang J; Zhuang L; Wang Y; Zhou Y; Meng Y; Hua G
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650473. PubMed ID: 24187290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in fixations between grasping and viewing objects.
    Brouwer AM; Franz VH; Gegenfurtner KR
    J Vis; 2009 Jan; 9(1):18.1-24. PubMed ID: 19271888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing human-robotic performance for vocational placement.
    Schuyler JL; Mahoney RM
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):394-404. PubMed ID: 11001519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.