These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28278475)

  • 21. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compact Series Visco-Elastic Joint (SVEJ) for Smooth Torque Control.
    Chiaradia D; Tiseni L; Frisoli A
    IEEE Trans Haptics; 2020; 13(1):226-232. PubMed ID: 32012025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study.
    Al-Halimi RK; Moussa M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):686-693. PubMed ID: 28113593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
    Seyfi NS; Keymasi Khalaji A
    ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative EEG Evaluation During Robot-Assisted Foot Movement.
    Formaggio E; Masiero S; Bosco A; Izzi F; Piccione F; Del Felice A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1633-1640. PubMed ID: 27845668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    MadoĊ„ski R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.
    Lee JD; Mooney LM; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):823-831. PubMed ID: 28463204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.
    Pezent E; Rose CG; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
    Yin YH; Fan YJ; Xu LD
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
    Vouga T; Zhuang KZ; Olivier J; Lebedev MA; Nicolelis MA; Bouri M; Bleuler H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):131-141. PubMed ID: 28141525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.