These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 2827857)

  • 1. Acetylcholine receptor availability and transmission efficacy.
    Rochel S; Robbins N
    Brain Res; 1987 Dec; 435(1-2):41-7. PubMed ID: 2827857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between miniature end-plate potential amplitudes and acetylcholine receptor densities in the neuromuscular contact formed in vitro.
    Kidokoro Y; Patrick J
    Brain Res; 1978 Feb; 142(2):368-73. PubMed ID: 630393
    [No Abstract]   [Full Text] [Related]  

  • 3. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin.
    Chiung Chang C; Jai Su M; Hsien Tung L
    J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denervation increases the degradation rate of acetylcholine receptors at end-plates in vivo and in vitro.
    Bevan S; Steinbach JH
    J Physiol; 1983 Mar; 336():159-77. PubMed ID: 6875905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of motoneuron excitability via motor endplate acetylcholine receptor activation.
    Nakanishi ST; Cope TC; Rich MM; Carrasco DI; Pinter MJ
    J Neurosci; 2005 Mar; 25(9):2226-32. PubMed ID: 15745948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the time course of miniature endplate currents induced by bath-applied acetylcholine.
    Magazanik LG; Snetkov VA; Giniatullin RA; Khazipov RN
    Neurosci Lett; 1990 Jun; 113(3):281-5. PubMed ID: 2381566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha-bungarotoxin-treated rats.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1992 Dec; 458():487-99. PubMed ID: 1302275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: evidence from specific toxin reactions.
    Albuquerque EX; Barnard EA; Chiu TH; Lapa AJ; Dolly JO; Jansson SE; Daly J; Witkop B
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):949-53. PubMed ID: 4351811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chronic treatment with various neuromuscular blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm.
    Chang CC; Chuang ST; Huang MC
    J Physiol; 1975 Aug; 250(1):161-73. PubMed ID: 170397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the mechanisms underlying the non-quantal release of acetylcholine at the mouse neuromuscular junction.
    Vyskocil F; Nikolsky E; Edwards C
    Neuroscience; 1983 Jun; 9(2):429-35. PubMed ID: 6308511
    [No Abstract]   [Full Text] [Related]  

  • 11. [Role of the density of cholinoreceptors in the mechanisms slowing a drop in the postsynaptic current].
    Ginatullin RA; Khazipov RN
    Biull Eksp Biol Med; 1988 Aug; 106(8):134-6. PubMed ID: 3416047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of junctional acetylcholine receptors that appear rapidly after denervation.
    Olek AJ; Robbins N
    Neuroscience; 1983 May; 9(1):225-33. PubMed ID: 6308504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynaptic transmission block can cause terminal sprouting of a motor nerve.
    Holland RL; Brown MC
    Science; 1980 Feb; 207(4431):649-51. PubMed ID: 6243417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture.
    Lupa MT; Caldwell JH
    J Cell Biol; 1991 Nov; 115(3):765-78. PubMed ID: 1655812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of the action of hyperpolarization and ethanol on frog end-plate currents at different cholinoceptor densities].
    Giniatullin RA; Khazipov RN; Khamitov KhS
    Neirofiziologiia; 1988; 20(1):128-30. PubMed ID: 3380206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of colchicine on rat neuromuscular transmission].
    Gao TM; Chen ZX; Sun WY
    Sheng Li Xue Bao; 1991 Jun; 43(3):236-42. PubMed ID: 1664975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of carbachol and alpha-bungarotoxin on the frequency of miniature endplate potentials at the frog neuromuscular junction.
    Bukharaeva E; Ipatova T; Nikolsky EE; Vyskocil F
    Exp Physiol; 2000 Mar; 85(2):125-31. PubMed ID: 10751508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-immunogenic myasthenia gravis model and its application in a study of transsynaptic regulation at the neuromuscular junction.
    Molenaar PC; Oen BS; Plomp JJ; Van Kempen GT; Jennekens FG; Hesselmans LF
    Eur J Pharmacol; 1991 Apr; 196(1):93-101. PubMed ID: 1874282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: its dependency on calcium.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):125-36. PubMed ID: 7965828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endplate blocking actions of lophotoxin.
    Atchison WD; Narahashi T; Vogel SM
    Br J Pharmacol; 1984 Jul; 82(3):667-72. PubMed ID: 6146369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.