These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2827868)

  • 1. Evidence for leucine-enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey.
    Edwards DL; Poletti CE; Foote WE
    Brain Res; 1987 Dec; 437(1):197-203. PubMed ID: 2827868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural morphometric analysis of enkephalin-immunoreactive terminals in the ventrocaudal periaqueductal gray: analysis of their relationship to periaqueductal gray-raphe magnus projection neurons.
    Williams FG; Beitz AJ
    Neuroscience; 1990; 38(2):381-94. PubMed ID: 2175854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA-synthesizing neurons in the medulla: their relationship to serotonin-containing and spinally projecting neurons in the rat.
    Jones BE; Holmes CJ; Rodriguez-Veiga E; Mainville L
    J Comp Neurol; 1991 Nov; 313(2):349-67. PubMed ID: 1722490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enkephalin-immunoreactive neuronal projections from the medulla oblongata to the intermediolateral cell column: relationship to substance P-immunoreactive neurons.
    Sasek CA; Helke CJ
    J Comp Neurol; 1989 Sep; 287(4):484-94. PubMed ID: 2477408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. II. Pontine neurons.
    Scudder CA; Moschovakis AK; Karabelas AB; Highstein SM
    J Neurophysiol; 1996 Jul; 76(1):353-70. PubMed ID: 8836230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrangement of neurons in the medullary reticular formation and raphe nuclei projecting to thoracic, lumbar and sacral segments of the spinal cord in the cat.
    Kausz M
    Anat Embryol (Berl); 1991; 183(2):151-63. PubMed ID: 2035851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticular and raphe projections to the spinal cord of the North American opossum. Evidence for connectional heterogeneity.
    Martin GF; Cabana T; DiTirro FJ; Ho RH; Humbertson AO
    Prog Brain Res; 1982; 57():109-29. PubMed ID: 6296915
    [No Abstract]   [Full Text] [Related]  

  • 10. Subthalamic nucleus of the monkey: connections and immunocytochemical features of afferents.
    Carpenter MB; Jayaraman A
    J Hirnforsch; 1990; 31(5):653-68. PubMed ID: 1707079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections.
    Mantyh PW
    J Neurophysiol; 1983 Mar; 49(3):582-94. PubMed ID: 6300351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions.
    Mason P
    Annu Rev Neurosci; 2001; 24():737-77. PubMed ID: 11520917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raphespinal and reticulospinal neurons project to the dorsal vagal complex in the rat.
    Manaker S; Fogarty PF
    Exp Brain Res; 1995; 106(1):79-92. PubMed ID: 8542980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulbospinal neurons of the cat that co-contain serotonin and methionine enkephalin.
    Fung SJ; Reddy VK; Zhuo H; Liu RH; Barnes CD
    Arch Ital Biol; 1994 Mar; 132(2):61-72. PubMed ID: 7519004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex.
    Bowker RM; Westlund KN; Sullivan MC; Wilber JF; Coulter JD
    Brain Res; 1983 Dec; 288(1-2):33-48. PubMed ID: 6198030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical connections of the nucleus prepositus of the cat.
    McCrea RA; Baker R
    J Comp Neurol; 1985 Jul; 237(3):377-407. PubMed ID: 2995460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus.
    Willis WD; Gerhart KD; Willcockson WS; Yezierski RP; Wilcox TK; Cargill CL
    J Neurophysiol; 1984 Mar; 51(3):467-80. PubMed ID: 6422009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response properties and functional organization of neurons in midline region of medullary reticular formation of cats.
    Yen CT; Blum PS
    J Neurophysiol; 1984 Nov; 52(5):961-79. PubMed ID: 6096523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins and trajectories of somatostatin reticulospinal neurons: a potential neurotransmitter candidate of the dorsal reticulospinal pathway.
    Bowker RM; Abbott LC
    Brain Res; 1988 May; 447(2):398-403. PubMed ID: 2898965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.
    Martin GF; Cabana T; Ditirro FJ; Ho RH; Humbertson AO
    J Comp Neurol; 1982 Jun; 208(1):67-84. PubMed ID: 6749912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.