These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28278769)

  • 1. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.
    Moreno L; Nemati M; Predicala B
    Environ Technol; 2018 Jan; 39(2):144-156. PubMed ID: 28278769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of surrogate naphthenic acids and electricity generation in microbial fuel cells: bioelectrochemical and microbial characterizations.
    Valdes Labrada GM; Nemati M
    Bioprocess Biosyst Eng; 2018 Nov; 41(11):1635-1649. PubMed ID: 30046898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biokinetic evaluation of fatty acids degradation in microbial fuel cell type bioreactors.
    Moreno L; Nemati M; Predicala B
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):25-38. PubMed ID: 24981022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridine degradation in the microbial fuel cells.
    Zhang C; Li M; Liu G; Luo H; Zhang R
    J Hazard Mater; 2009 Dec; 172(1):465-71. PubMed ID: 19682792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dye removal of AR27 with enhanced degradation and power generation in a microbial fuel cell using bioanode of treated clinoptilolite-modified graphite felt.
    Kardi SN; Ibrahim N; Darzi GN; Rashid NAA; Villaseñor J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19444-19457. PubMed ID: 28580546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.
    Cheng K; Hu J; Hou H; Liu B; Chen Q; Pan K; Pu W; Yang J; Wu X; Yang C
    Bioresour Technol; 2017 Apr; 229():126-133. PubMed ID: 28110229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.
    Zhu X; Logan BE
    J Hazard Mater; 2013 May; 252-253():198-203. PubMed ID: 23523911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate.
    Song TS; Wu XY; Zhou CC
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):133-8. PubMed ID: 23708676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity generation using a baffled microbial fuel cell convenient for stacking.
    Li Z; Yao L; Kong L; Liu H
    Bioresour Technol; 2008 Apr; 99(6):1650-5. PubMed ID: 17532210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation.
    Ganesh K; Jambeck JR
    Bioresour Technol; 2013 Jul; 139():383-7. PubMed ID: 23692849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane.
    Tran HT; Ryu JH; Jia YH; Oh SJ; Choi JY; Park DH; Ahn DH
    Water Sci Technol; 2010; 61(7):1819-27. PubMed ID: 20371941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.
    Choi J; Ahn Y
    Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electricity generation using the packing-type microbial fuel cells].
    Liang P; Fan MZ; Cao XX; Huang X; Huang ZH; Wang C
    Huan Jing Ke Xue; 2008 Feb; 29(2):512-7. PubMed ID: 18613529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells.
    Damiano L; Jambeck JR; Ringelberg DB
    Appl Biochem Biotechnol; 2014 May; 173(2):472-85. PubMed ID: 24671566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell.
    Nam JY; Kim HW; Lim KH; Shin HS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S33-7. PubMed ID: 19394820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation.
    Zhang B; Zhao H; Zhou S; Shi C; Wang C; Ni J
    Bioresour Technol; 2009 Dec; 100(23):5687-93. PubMed ID: 19604688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation.
    Corbella C; Garfí M; Puigagut J
    Sci Total Environ; 2014 Feb; 470-471():754-8. PubMed ID: 24184552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.