BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28278780)

  • 1. Analysis of organic compounds' degradation and electricity generation in anaerobic fluidized bed microbial fuel cell for coking wastewater treatment.
    Liu X; Wu J; Guo Q
    Environ Technol; 2017 Dec; 38(24):3115-3121. PubMed ID: 28278780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.
    Kim KY; Yang W; Ye Y; LaBarge N; Logan BE
    Bioresour Technol; 2016 May; 208():58-63. PubMed ID: 26921870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of phenolic wastewater by anaerobic fluidized bed microbial fuel cell using carbon brush as anode: microbial community analysis and m-cresol degradation mechanism.
    Zhou Z; Liu X; Chen R; Hu X; Guo Q
    Bioprocess Biosyst Eng; 2023 Dec; 46(12):1801-1815. PubMed ID: 37878182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].
    Li H; Zhu XP; Xu N; Ni JR
    Huan Jing Ke Xue; 2011 Jan; 32(1):186-92. PubMed ID: 21404685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the mechanism of anaerobic fluidized bed microbial fuel cell for coal chemical wastewater treatment.
    Niu Y; Liu X; Wang L; Guo Q; Wu J
    Bioprocess Biosyst Eng; 2022 Mar; 45(3):481-492. PubMed ID: 35031865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable power production from petrochemical industrial effluent using dual chambered microbial fuel cell.
    Tamilarasan K; Shabarish S; Rajesh Banu J; Godvin Sharmila V
    J Environ Manage; 2024 Feb; 351():119777. PubMed ID: 38086119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.
    Abbasi U; Jin W; Pervez A; Bhatti ZA; Tariq M; Shaheen S; Iqbal A; Mahmood Q
    Bioresour Technol; 2016 Jan; 200():1-7. PubMed ID: 26476157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term evaluating the strengthening effects of iron-carbon mediator for coking wastewater treatment in EGSB reactor.
    Liu Y; Zhang Z; Song Y; Peng F; Feng Y
    J Hazard Mater; 2024 Aug; 474():134701. PubMed ID: 38824774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: Role of zero-valent iron in metagenomic functions.
    Xu W; Zhao H; Cao H; Zhang Y; Sheng Y; Li T; Zhou S; Li H
    Bioresour Technol; 2020 Mar; 300():122667. PubMed ID: 31901513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.
    Ren L; Ahn Y; Logan BE
    Environ Sci Technol; 2014 Apr; 48(7):4199-206. PubMed ID: 24568605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor.
    Li K; Wu H; Wei J; Qiu G; Wei C; Cheng D; Zhong L
    J Environ Manage; 2019 Dec; 252():109661. PubMed ID: 31634728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system.
    Zhu S; Wu H; Wei C; Zhou L; Xie J
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):949-60. PubMed ID: 26428241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry.
    Ban Q; Zhang L; Li J
    Chemosphere; 2022 Jan; 286(Pt 2):131724. PubMed ID: 34388873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.
    Estrada-Arriaga EB; Guillen-Alonso Y; Morales-Morales C; García-Sánchez L; Bahena-Bahena EO; Guadarrama-Pérez O; Loyola-Morales F
    Water Sci Technol; 2017 Jul; 76(3-4):683-693. PubMed ID: 28759450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electricity production from surplus sludge using microbial fuel cells].
    Jia B; Liu ZH; Li XM; Yang YL; Yang Q; Zeng GM; Liu YL; Liu QQ; Zheng SW
    Huan Jing Ke Xue; 2009 Apr; 30(4):1227-31. PubMed ID: 19545034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell.
    Ghangrekar MM; Shinde VB
    Water Sci Technol; 2008; 58(1):37-43. PubMed ID: 18653934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.
    Liu H; Ramnarayanan R; Logan BE
    Environ Sci Technol; 2004 Apr; 38(7):2281-5. PubMed ID: 15112835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis.
    Yuan K; Li S; Zhong F
    J Hazard Mater; 2020 Dec; 400():123117. PubMed ID: 32574876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.