BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28279165)

  • 21. Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone.
    Borbolla-Vázquez J; Orozco E; Betanzos A; Rodríguez MA
    Parasit Vectors; 2015 Apr; 8():219. PubMed ID: 25889855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine Methylation: The Coming of Age.
    Blanc RS; Richard S
    Mol Cell; 2017 Jan; 65(1):8-24. PubMed ID: 28061334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation.
    Maron MI; Casill AD; Gupta V; Roth JS; Sidoli S; Query CC; Gamble MJ; Shechter D
    Elife; 2022 Jan; 11():. PubMed ID: 34984976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics.
    MacMillan CP; Taylor L; Bi Y; Southerton SG; Evans R; Spokevicius A
    New Phytol; 2015 Jun; 206(4):1314-27. PubMed ID: 25676073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Study of
    Lorenzon L; Quilles JC; Campagnaro GD; Azevedo Orsine L; Almeida L; Veras F; Miserani Magalhães RD; Alcoforado Diniz J; Rodrigues Ferreira T; Kaysel Cruz A
    ACS Infect Dis; 2022 Mar; 8(3):516-532. PubMed ID: 35226477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance.
    Gao Y; Feng C; Ma J; Yan Q
    Biochem Pharmacol; 2024 Mar; 221():116048. PubMed ID: 38346542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges.
    Tobias PA; Christie N; Naidoo S; Guest DI; Külheim C
    Tree Physiol; 2017 May; 37(5):565-582. PubMed ID: 28338992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptidic transition state analogues as PRMT inhibitors.
    Zhang Y; van Haren MJ; Martin NI
    Methods; 2020 Mar; 175():24-29. PubMed ID: 31421210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance.
    Zhu Y; Xia T; Chen DQ; Xiong X; Shi L; Zuo Y; Xiao H; Liu L
    Drug Resist Updat; 2024 Jan; 72():101016. PubMed ID: 37980859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites.
    van Haren M; van Ufford LQ; Moret EE; Martin NI
    Org Biomol Chem; 2015 Jan; 13(2):549-60. PubMed ID: 25380215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome.
    Hernando CE; Sanchez SE; Mancini E; Yanovsky MJ
    BMC Genomics; 2015 Mar; 16(1):192. PubMed ID: 25880665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Characterization, Evolution, and Expression Profiling of
    Yan H; Wang Y; Hu B; Qiu Z; Zeng B; Fan C
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974801
    [No Abstract]   [Full Text] [Related]  

  • 33. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer.
    Shailesh H; Zakaria ZZ; Baiocchi R; Sif S
    Oncotarget; 2018 Nov; 9(94):36705-36718. PubMed ID: 30613353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro and in vivo analysis of the major type I protein arginine methyltransferase from Trypanosoma brucei.
    Pelletier M; Pasternack DA; Read LK
    Mol Biochem Parasitol; 2005 Dec; 144(2):206-17. PubMed ID: 16198009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases.
    Eram MS; Shen Y; Szewczyk M; Wu H; Senisterra G; Li F; Butler KV; Kaniskan HÜ; Speed BA; Dela Seña C; Dong A; Zeng H; Schapira M; Brown PJ; Arrowsmith CH; Barsyte-Lovejoy D; Liu J; Vedadi M; Jin J
    ACS Chem Biol; 2016 Mar; 11(3):772-781. PubMed ID: 26598975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis.
    Ouyang LJ; Li LM
    Transgenic Res; 2016 Aug; 25(4):441-52. PubMed ID: 26905275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.
    Bazin J; Khan GA; Combier JP; Bustos-Sanmamed P; Debernardi JM; Rodriguez R; Sorin C; Palatnik J; Hartmann C; Crespi M; Lelandais-Brière C
    Plant J; 2013 Jun; 74(6):920-34. PubMed ID: 23566016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein arginine methyltransferases (PRMTs): role in chromatin organization.
    Jahan S; Davie JR
    Adv Biol Regul; 2015 Jan; 57():173-84. PubMed ID: 25263650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay between chromatin remodelers and protein arginine methyltransferases.
    Pal S; Sif S
    J Cell Physiol; 2007 Nov; 213(2):306-15. PubMed ID: 17708529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein arginine methyltransferases interact with intraflagellar transport particles and change location during flagellar growth and resorption.
    Mizuno K; Sloboda RD
    Mol Biol Cell; 2017 May; 28(9):1208-1222. PubMed ID: 28298486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.