These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2827950)

  • 21. Cyclic nucleotide hydrolysis in the thyroid gland. General properties and key role in the interrelations between concentrations of adenosine 3':5'-monophosphate and guanosine 3':5'-monophosphate.
    Erneux C; Van Sande J; Dumont JE; Boeynaems JM
    Eur J Biochem; 1977 Jan; 72(1):137-47. PubMed ID: 12974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic nucleotide phosphodiesterases in uterine development.
    Stancel GM; Thompson WJ; Strada SJ
    Mol Cell Endocrinol; 1975 Oct; 3(4):283-95. PubMed ID: 172392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cGMP signal termination.
    Pyne NJ; Arshavsky V; Lochhead A
    Biochem Soc Trans; 1996 Nov; 24(4):1019-22. PubMed ID: 8968504
    [No Abstract]   [Full Text] [Related]  

  • 24. Independent cAMP and cGMP phosphodiesterases in Blastocladiella emersonii.
    Vale MR; Gomes SL; Maia JC
    FEBS Lett; 1975 Aug; 56(2):332-6. PubMed ID: 169164
    [No Abstract]   [Full Text] [Related]  

  • 25. Cyclic nucleotide derivatives as probes of phosphodiesterase catalytic and regulatory sites.
    Erneux C; Couchie D; Dumont JE; Jastorff B
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():107-18. PubMed ID: 6326517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of 3',5' cyclic nucleotide phosphodiesterase activity in Y79 retinoblastoma cells: absence of functional PDE6.
    White JB; Thompson WJ; Pittler SJ
    Mol Vis; 2004 Oct; 10():738-49. PubMed ID: 15480303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate and effector specificity of a guanosine 3':5'-monophosphate phosphodiesterase from rat liver.
    Moss J; Manganiello VC; Vaughan M
    J Biol Chem; 1977 Aug; 252(15):5211-5. PubMed ID: 195942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of in vivo and in vitro properties of cyclic adenosine 3':5'-monophosphate phosphodiesterase of amphibian oocytes.
    Allende CC; Bravo R; Allende JE
    J Biol Chem; 1977 Jul; 252(13):4662-6. PubMed ID: 194890
    [No Abstract]   [Full Text] [Related]  

  • 29. Characterization of phosphodiesterase catalytic sites by means of cyclic nucleotide derivatives.
    Couchie D; Petridis G; Jastorff B; Erneux C
    Eur J Biochem; 1983 Nov; 136(3):571-5. PubMed ID: 6315435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes.
    Keravis T; Komas N; Lugnier C
    J Vasc Res; 2000; 37(4):235-49. PubMed ID: 10965223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diurnal rhythm in rat pineal cyclic nucleotide phosphodiesterase activity.
    Minneman KP; Iversen LL
    Nature; 1976 Mar; 260(5546):59-61. PubMed ID: 177878
    [No Abstract]   [Full Text] [Related]  

  • 32. Cyclic nucleotide phosphodiesterase in silkworm. Developmental change of cyclic AMP and cyclic GMP phosphodiesterases.
    Morishima I
    Biochim Biophys Acta; 1975 Sep; 403(1):106-12. PubMed ID: 240422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic nucleotide-mediated regulation of vascular smooth muscle cell cyclic nucleotide phosphodiesterase activity. Selective effect of cyclic AMP.
    Maurice DH
    Cell Biochem Biophys; 1998; 29(1-2):35-47. PubMed ID: 9631237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two isoforms of cGMP-inhibited cyclic nucleotide phosphodiesterases in human tissues distinguished by their responses to vesnarinone, a new cardiotonic agent.
    Masuoka H; Ito M; Sugioka M; Kozeki H; Konishi T; Tanaka T; Nakano T
    Biochem Biophys Res Commun; 1993 Jan; 190(2):412-7. PubMed ID: 8381275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart.
    Donnelly TE
    Biochim Biophys Acta; 1977 Jan; 480(1):194-203. PubMed ID: 188479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplicity within cyclic nucleotide phosphodiesterases.
    Rybalkin SD; Beavo JA
    Biochem Soc Trans; 1996 Nov; 24(4):1005-9. PubMed ID: 8968501
    [No Abstract]   [Full Text] [Related]  

  • 37. The identification and characterization of two cyclic nucleotide phosphodiesterases from bovine adrenal medulla.
    Sabatine JM; Coffee CJ
    Arch Biochem Biophys; 1986 Aug; 249(1):95-105. PubMed ID: 3017224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphodiesterases Expression during Murine Cardiac Development.
    Carvalho TMDCS; Cardarelli S; Giorgi M; Lenzi A; Isidori AM; Naro F
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of Ca++ on cyclic nucleotide phosphodiesterases of superior cervical ganglion.
    Boudreau RJ; Drummond GI
    J Cyclic Nucleotide Res; 1975; 1(4):219-28. PubMed ID: 177462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate levels, cyclases, and phosphodiesterases in Morris hepatomas and liver.
    Hickie RA; Thompson WJ; Strada SJ; Couture-Murillo B; Morris HP; Robison GA
    Cancer Res; 1977 Oct; 37(10):3599-606. PubMed ID: 20224
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.