BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28279562)

  • 1. Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding.
    Sweeney P; Yang Y
    Trends Endocrinol Metab; 2017 Jun; 28(6):437-448. PubMed ID: 28279562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Inhibitory Septum to Lateral Hypothalamus Circuit That Suppresses Feeding.
    Sweeney P; Yang Y
    J Neurosci; 2016 Nov; 36(44):11185-11195. PubMed ID: 27807162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits.
    Qualls-Creekmore E; Münzberg H
    Endocrinology; 2018 Nov; 159(11):3631-3642. PubMed ID: 30215694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventrolateral hypothalamic area and the parvafox nucleus: Role in the expression of (positive) emotions?
    Alvarez-Bolado G; Celio MR
    J Comp Neurol; 2016 Jun; 524(8):1616-23. PubMed ID: 26179507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons.
    Gutierrez R; Lobo MK; Zhang F; de Lecea L
    IUBMB Life; 2011 Oct; 63(10):824-30. PubMed ID: 21901814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour.
    Bonnavion P; Mickelsen LE; Fujita A; de Lecea L; Jackson AC
    J Physiol; 2016 Nov; 594(22):6443-6462. PubMed ID: 27302606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits.
    Yang Y; Wang JZ
    Front Neural Circuits; 2017; 11():86. PubMed ID: 29163066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors.
    Nieh EH; Kim SY; Namburi P; Tye KM
    Brain Res; 2013 May; 1511():73-92. PubMed ID: 23142759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems.
    Liu CM; Kanoski SE
    Physiol Behav; 2018 Sep; 193(Pt B):223-231. PubMed ID: 29421588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The neuronal reactions of the emotional areas of the hippocampus in emotional exposures of different characters].
    Zaĭchenko MI; Mikhaĭlova NG; Raĭgorodskiĭ IuV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(2):367-76. PubMed ID: 7597833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding.
    O'Connor EC; Kremer Y; Lefort S; Harada M; Pascoli V; Rohner C; Lüscher C
    Neuron; 2015 Nov; 88(3):553-64. PubMed ID: 26593092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behaviorally specific versus non-specific suppression of accumbens shell-mediated feeding by ipsilateral versus bilateral inhibition of the lateral hypothalamus.
    Urstadt KR; Coop SH; Banuelos BD; Stanley BG
    Behav Brain Res; 2013 Nov; 257():230-41. PubMed ID: 24100119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding.
    Rossi MA; Stuber GD
    Cell Metab; 2018 Jan; 27(1):42-56. PubMed ID: 29107504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral hypothalamic circuits for feeding and reward.
    Stuber GD; Wise RA
    Nat Neurosci; 2016 Feb; 19(2):198-205. PubMed ID: 26814589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated neuropeptide Y in the arcuate nucleus of young obese Zucker rats may contribute to the development of their overeating.
    Beck B; Burlet A; Bazin R; Nicolas JP; Burlet C
    J Nutr; 1993 Jun; 123(6):1168-72. PubMed ID: 8505677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nociceptin/orphanin FQ peptide in hypothalamic neurones associated with the control of feeding behaviour.
    Maolood N; Meister B
    J Neuroendocrinol; 2010 Feb; 22(2):75-82. PubMed ID: 20025627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A temperature-regulated circuit for feeding behavior.
    Qian S; Yan S; Pang R; Zhang J; Liu K; Shi Z; Wang Z; Chen P; Zhang Y; Luo T; Hu X; Xiong Y; Zhou Y
    Nat Commun; 2022 Jul; 13(1):4229. PubMed ID: 35869064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a Stress-Sensitive Anorexigenic Neurocircuit From Medial Prefrontal Cortex to Lateral Hypothalamus.
    Clarke RE; Voigt K; Reichenbach A; Stark R; Bharania U; Dempsey H; Lockie SH; Mequinion M; Lemus M; Wei B; Reed F; Rawlinson S; Nunez-Iglesias J; Foldi CJ; Kravitz AV; Verdejo-Garcia A; Andrews ZB
    Biol Psychiatry; 2023 Feb; 93(4):309-321. PubMed ID: 36400605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?
    Russo C; Russo A; Pellitteri R; Stanzani S
    Neurosci Lett; 2017 Jul; 653():126-131. PubMed ID: 28552455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projections from a single NUCB2/nesfatin-1 neuron in the paraventricular nucleus to different brain regions involved in feeding.
    Maejima Y; Kumamoto K; Takenoshita S; Shimomura K
    Brain Struct Funct; 2016 Dec; 221(9):4723-4731. PubMed ID: 26639940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.