BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28279966)

  • 21. Thrombospondin-1 and ADAMTS13 competitively bind to VWF A2 and A3 domains in vitro.
    Wang A; Liu F; Dong N; Ma Z; Zhang J; Su J; Zhao Y; Ruan C
    Thromb Res; 2010 Oct; 126(4):e260-5. PubMed ID: 20705333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling ADAMTS13-von Willebrand factor interaction: Implications for oxidative stress-related cardiovascular diseases and type 2A von Willebrand disease.
    Pozzi N; Lancellotti S; De Cristofaro R; De Filippis V
    Biophys Chem; 2012 Jan; 160(1):1-11. PubMed ID: 21937160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF.
    Zanardelli S; Chion AC; Groot E; Lenting PJ; McKinnon TA; Laffan MA; Tseng M; Lane DA
    Blood; 2009 Sep; 114(13):2819-28. PubMed ID: 19587373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of the von Willebrand factor-dependent platelet adhesion through alternative proteolytic pathways.
    Wohner N; Kovács A; Machovich R; Kolev K
    Thromb Res; 2012 Apr; 129(4):e41-6. PubMed ID: 22178067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmin-cleaved von Willebrand factor as a biomarker for microvascular thrombosis.
    El Otmani H; Frunt R; Smits S; Barendrecht AD; de Maat S; Fijnheer R; Lenting PJ; Tersteeg C
    Blood; 2024 May; 143(20):2089-2098. PubMed ID: 38271661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. von Willebrand factor without the A2 domain is resistant to proteolysis.
    Lankhof H; Damas C; Schiphorst ME; Ijsseldijk MJ; Bracke M; Furlan M; Tsai HM; de Groot PG; Sixma JJ; Vink T
    Thromb Haemost; 1997 May; 77(5):1008-13. PubMed ID: 9184419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood group antigen A on von Willebrand factor is more protective against ADAMTS13 cleavage than antigens B and H.
    Hayakawa M; Kato S; Matsui T; Sakai K; Fujimura Y; Matsumoto M
    J Thromb Haemost; 2019 Jun; 17(6):975-983. PubMed ID: 30929293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shear stress and von Willebrand factor in health and disease.
    Tsai HM
    Semin Thromb Hemost; 2003 Oct; 29(5):479-88. PubMed ID: 14631548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-ranged Protein-glycan Interactions Stabilize von Willebrand Factor A2 Domain from Mechanical Unfolding.
    Dong C; Lee J; Kim S; Lai W; Webb EB; Oztekin A; Zhang XF; Im W
    Sci Rep; 2018 Oct; 8(1):16017. PubMed ID: 30375453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation.
    Serrano SMT; Wang D; Shannon JD; Pinto AFM; Polanowska-Grabowska RK; Fox JW
    FEBS J; 2007 Jul; 274(14):3611-3621. PubMed ID: 17578514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers.
    Lippok S; Radtke M; Obser T; Kleemeier L; Schneppenheim R; Budde U; Netz RR; Rädler JO
    Biophys J; 2016 Feb; 110(3):545-554. PubMed ID: 26840720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The WXXW motif in the TSR1 of ADAMTS13 is important for its secretion and proteolytic activity.
    Ling J; Su J; Ma Z; Ruan C
    Thromb Res; 2013 Jun; 131(6):529-34. PubMed ID: 23683325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular biology of ADAMTS13 and diagnostic utility of ADAMTS13 proteolytic activity and inhibitor assays.
    Shelat SG; Ai J; Zheng XL
    Semin Thromb Hemost; 2005 Dec; 31(6):659-72. PubMed ID: 16388417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leukocyte proteases cleave von Willebrand factor at or near the ADAMTS13 cleavage site.
    Raife TJ; Cao W; Atkinson BS; Bedell B; Montgomery RR; Lentz SR; Johnson GF; Zheng XL
    Blood; 2009 Aug; 114(8):1666-74. PubMed ID: 19541819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Backbone resonance assignments of the A2 domain of mouse von Willebrand factor.
    Morimoto D; Osugi M; Mahana Y; Walinda E; Shirakawa M; Sugase K
    Biomol NMR Assign; 2021 Oct; 15(2):427-431. PubMed ID: 34286417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region.
    Fu X; Chen J; Gallagher R; Zheng Y; Chung DW; López JA
    Blood; 2011 Nov; 118(19):5283-91. PubMed ID: 21917758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.
    Gogia S; Neelamegham S
    Biorheology; 2015; 52(5-6):319-35. PubMed ID: 26600266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear stress-independent binding of von Willebrand factor-type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance.
    Wohner N; Legendre P; Casari C; Christophe OD; Lenting PJ; Denis CV
    J Thromb Haemost; 2015 May; 13(5):815-20. PubMed ID: 25728415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ADAMTS13 cleavage efficiency is altered by mutagenic and, to a lesser extent, polymorphic sequence changes in the A1 and A2 domains of von Willebrand factor.
    Pruss CM; Notley CR; Hegadorn CA; O'Brien LA; Lillicrap D
    Br J Haematol; 2008 Nov; 143(4):552-8. PubMed ID: 18986390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation G1629E Increases von Willebrand Factor Cleavage via a Cooperative Destabilization Mechanism.
    Aponte-Santamaría C; Lippok S; Mittag JJ; Obser T; Schneppenheim R; Baldauf C; Gräter F; Budde U; Rädler JO
    Biophys J; 2017 Jan; 112(1):57-65. PubMed ID: 28076816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.