BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 28280001)

  • 1. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish.
    Prykhozhij SV; Steele SL; Razaghi B; Berman JN
    Dis Model Mech; 2017 Jun; 10(6):811-822. PubMed ID: 28280001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid reverse genetic screening using CRISPR in zebrafish.
    Shah AN; Davey CF; Whitebirch AC; Miller AC; Moens CB
    Nat Methods; 2015 Jun; 12(6):535-40. PubMed ID: 25867848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility.
    Ramanagoudr-Bhojappa R; Carrington B; Ramaswami M; Bishop K; Robbins GM; Jones M; Harper U; Frederickson SC; Kimble DC; Sood R; Chandrasekharappa SC
    PLoS Genet; 2018 Dec; 14(12):e1007821. PubMed ID: 30540754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
    Prykhozhij SV; Rajan V; Berman JN
    Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of novel domain-specific mutations in the zebrafish
    Turner AN; Andersen RS; Bookout IE; Brashear LN; Davis JC; Gahan DM; Davis JC; Gotham JP; Hijaz BA; Kaushik AS; Mcgill JB; Miller VL; Moseley ZP; Nowell CL; Patel RK; Rodgers MC; Patel RK; Shihab YA; Walker AP; Glover SR; Foster SD; Challa AK
    J Genet; 2018 Dec; 97(5):1315-1325. PubMed ID: 30555080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted disruption of the endogenous zebrafish
    Zelinka CP; Sotolongo-Lopez M; Fadool JM
    Mol Vis; 2018; 24():587-602. PubMed ID: 30210230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust.
    Chen D; Tang JX; Li B; Hou L; Wang X; Kang L
    BMC Biotechnol; 2018 Sep; 18(1):60. PubMed ID: 30253761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAs.
    Kim BH; Zhang G
    G3 (Bethesda); 2020 Mar; 10(3):1029-1037. PubMed ID: 31915253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method based on Sanger sequencing and MS Word wildcard searching to identify Cas9-induced frameshift mutations.
    Jie H; Li Z; Wang P; Zhao L; Zhang Q; Yao X; Song X; Zhao Y; Yao S
    Lab Invest; 2017 Dec; 97(12):1500-1507. PubMed ID: 28825696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System.
    Armstrong GA; Liao M; You Z; Lissouba A; Chen BE; Drapeau P
    PLoS One; 2016; 11(3):e0150188. PubMed ID: 26930076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system.
    Irion U; Krauss J; Nüsslein-Volhard C
    Development; 2014 Dec; 141(24):4827-30. PubMed ID: 25411213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Genome Editing in Chicken DF-1 Cells Using the CRISPR/Cas9 System.
    Bai Y; He L; Li P; Xu K; Shao S; Ren C; Liu Z; Wei Z; Zhang Z
    G3 (Bethesda); 2016 Apr; 6(4):917-23. PubMed ID: 26869617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the efficiency for generation of genome-edited zebrafish by labeling primordial germ cells.
    Dong Z; Dong X; Jia W; Cao S; Zhao Q
    Int J Biochem Cell Biol; 2014 Oct; 55():329-34. PubMed ID: 25194339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.