These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28280098)

  • 1. Monostable superrepellent materials.
    Li Y; Quéré D; Lv C; Zheng Q
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3387-3392. PubMed ID: 28280098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconventional Dually-Mobile Superrepellent Surfaces.
    Fan Y; Wang S; Huang Y; Tan Y; Gui L; Huang S; Tian X
    Adv Mater; 2024 Jul; 36(30):e2402893. PubMed ID: 38848582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop Impact on Two-Tier Monostable Superrepellent Surfaces.
    Shi S; Lv C; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43698-43707. PubMed ID: 31644872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.
    Shi S; Lv C; Zheng Q
    Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states.
    Xiao S; Zhang Z; He J
    Phys Chem Chem Phys; 2018 Oct; 20(38):24759-24767. PubMed ID: 30229243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-Superrepellent Bioinspired Fibrillar Adhesives.
    Liimatainen V; Drotlef DM; Son D; Sitti M
    Adv Mater; 2020 May; 32(19):e2000497. PubMed ID: 32239584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface.
    Huang L; Yao Y; Peng Z; Zhang B; Chen S
    J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition.
    Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M
    Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy.
    Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ
    J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces.
    Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M
    Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet.
    Singh RK; Hodgson PD; Sen N; Das S
    Langmuir; 2021 Mar; 37(10):3038-3048. PubMed ID: 33651946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.