BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28280519)

  • 1. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models.
    Khalifa F; Soliman A; Elmaghraby A; Gimel'farb G; El-Baz A
    Comput Math Methods Med; 2017; 2017():9818506. PubMed ID: 28280519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D kidney segmentation from CT images using a level set approach guided by a novel stochastic speed function.
    Khalifa F; Elnakib A; Beache GM; Gimel'farb G; El-Ghar MA; Ouseph R; Sokhadze G; Manning S; McClure P; El-Baz A
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):587-94. PubMed ID: 22003747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling.
    Soliman A; Khalifa F; Elnakib A; Abou El-Ghar M; Dunlap N; Wang B; Gimel'farb G; Keynton R; El-Baz A
    IEEE Trans Med Imaging; 2017 Jan; 36(1):263-276. PubMed ID: 27705854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiautomatic segmentation of liver metastases on volumetric CT images.
    Yan J; Schwartz LH; Zhao B
    Med Phys; 2015 Nov; 42(11):6283-93. PubMed ID: 26520721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A minimum spanning forest based classification method for dedicated breast CT images.
    Pike R; Sechopoulos I; Fei B
    Med Phys; 2015 Nov; 42(11):6190-202. PubMed ID: 26520712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for quantification and visualization of segmentation accuracy and variability in 3D lateral ventricle ultrasound images of preterm neonates.
    Chen Y; Qiu W; Kishimoto J; Gao Y; Chan RH; de Ribaupierre S; Fenster A; Chiu B
    Med Phys; 2015 Nov; 42(11):6387-405. PubMed ID: 26520730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D kidney segmentation from abdominal diffusion MRI using an appearance-guided deformable boundary.
    Shehata M; Mahmoud A; Soliman A; Khalifa F; Ghazal M; Abou El-Ghar M; El-Melegy M; El-Baz A
    PLoS One; 2018; 13(7):e0200082. PubMed ID: 30005069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automatic method for renal cortex segmentation on CT images: evaluation on kidney donors.
    Chen X; Summers RM; Cho M; Bagci U; Yao J
    Acad Radiol; 2012 May; 19(5):562-70. PubMed ID: 22341876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D liver segmentation using multiple region appearances and graph cuts.
    Peng J; Hu P; Lu F; Peng Z; Kong D; Zhang H
    Med Phys; 2015 Dec; 42(12):6840-52. PubMed ID: 26632041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm.
    Song H; Kang W; Zhang Q; Wang S
    BMC Syst Biol; 2015; 9 Suppl 5(Suppl 5):S5. PubMed ID: 26356850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.